Can Generic LLMs Help Analyze Child-adult Interactions Involving Children with Autism in Clinical Observation?

Large Language Models (LLMs) have shown significant potential in understanding human communication and interaction. However, their performance in the domain of child-inclusive interactions, including in clinical settings, remains less explored. In this work, we evaluate generic LLMs' ability to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Feng, Tiantian, Xu, Anfeng, Lahiri, Rimita, Tager-Flusberg, Helen, Kim, So Hyun, Bishop, Somer, Lord, Catherine, Narayanan, Shrikanth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Feng, Tiantian
Xu, Anfeng
Lahiri, Rimita
Tager-Flusberg, Helen
Kim, So Hyun
Bishop, Somer
Lord, Catherine
Narayanan, Shrikanth
description Large Language Models (LLMs) have shown significant potential in understanding human communication and interaction. However, their performance in the domain of child-inclusive interactions, including in clinical settings, remains less explored. In this work, we evaluate generic LLMs' ability to analyze child-adult dyadic interactions in a clinically relevant context involving children with ASD. Specifically, we explore LLMs in performing four tasks: classifying child-adult utterances, predicting engaged activities, recognizing language skills and understanding traits that are clinically relevant. Our evaluation shows that generic LLMs are highly capable of analyzing long and complex conversations in clinical observation sessions, often surpassing the performance of non-expert human evaluators. The results show their potential to segment interactions of interest, assist in language skills evaluation, identify engaged activities, and offer clinical-relevant context for assessments.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130508287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130508287</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305082873</originalsourceid><addsrcrecordid>eNqNjd1qwkAQRpdCQbF5h4FeBza7jeauSKg_EOmN92EbRx3ZTuzOJqJPr6IP0KvDB-fjvKihsTZLiw9jBioROWitzXhi8twOFZeOYY6MgRqoqpXAAv0Rpuz8-YJQ7slvUrfpfIQlRwyuidSy3Ebf-p5491ACMpwo7mHaRZJfIIbSE1PjPHz_CIbe3X-fb-p167xg8uRIvc--1uUiPYb2r0OJ9aHtwi0utc2sznVhion9n3UFn8RJVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130508287</pqid></control><display><type>article</type><title>Can Generic LLMs Help Analyze Child-adult Interactions Involving Children with Autism in Clinical Observation?</title><source>Free E- Journals</source><creator>Feng, Tiantian ; Xu, Anfeng ; Lahiri, Rimita ; Tager-Flusberg, Helen ; Kim, So Hyun ; Bishop, Somer ; Lord, Catherine ; Narayanan, Shrikanth</creator><creatorcontrib>Feng, Tiantian ; Xu, Anfeng ; Lahiri, Rimita ; Tager-Flusberg, Helen ; Kim, So Hyun ; Bishop, Somer ; Lord, Catherine ; Narayanan, Shrikanth</creatorcontrib><description>Large Language Models (LLMs) have shown significant potential in understanding human communication and interaction. However, their performance in the domain of child-inclusive interactions, including in clinical settings, remains less explored. In this work, we evaluate generic LLMs' ability to analyze child-adult dyadic interactions in a clinically relevant context involving children with ASD. Specifically, we explore LLMs in performing four tasks: classifying child-adult utterances, predicting engaged activities, recognizing language skills and understanding traits that are clinically relevant. Our evaluation shows that generic LLMs are highly capable of analyzing long and complex conversations in clinical observation sessions, often surpassing the performance of non-expert human evaluators. The results show their potential to segment interactions of interest, assist in language skills evaluation, identify engaged activities, and offer clinical-relevant context for assessments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autism ; Children ; Context ; Human communication ; Human performance ; Large language models ; Performance evaluation ; Skills ; Task complexity</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Feng, Tiantian</creatorcontrib><creatorcontrib>Xu, Anfeng</creatorcontrib><creatorcontrib>Lahiri, Rimita</creatorcontrib><creatorcontrib>Tager-Flusberg, Helen</creatorcontrib><creatorcontrib>Kim, So Hyun</creatorcontrib><creatorcontrib>Bishop, Somer</creatorcontrib><creatorcontrib>Lord, Catherine</creatorcontrib><creatorcontrib>Narayanan, Shrikanth</creatorcontrib><title>Can Generic LLMs Help Analyze Child-adult Interactions Involving Children with Autism in Clinical Observation?</title><title>arXiv.org</title><description>Large Language Models (LLMs) have shown significant potential in understanding human communication and interaction. However, their performance in the domain of child-inclusive interactions, including in clinical settings, remains less explored. In this work, we evaluate generic LLMs' ability to analyze child-adult dyadic interactions in a clinically relevant context involving children with ASD. Specifically, we explore LLMs in performing four tasks: classifying child-adult utterances, predicting engaged activities, recognizing language skills and understanding traits that are clinically relevant. Our evaluation shows that generic LLMs are highly capable of analyzing long and complex conversations in clinical observation sessions, often surpassing the performance of non-expert human evaluators. The results show their potential to segment interactions of interest, assist in language skills evaluation, identify engaged activities, and offer clinical-relevant context for assessments.</description><subject>Autism</subject><subject>Children</subject><subject>Context</subject><subject>Human communication</subject><subject>Human performance</subject><subject>Large language models</subject><subject>Performance evaluation</subject><subject>Skills</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjd1qwkAQRpdCQbF5h4FeBza7jeauSKg_EOmN92EbRx3ZTuzOJqJPr6IP0KvDB-fjvKihsTZLiw9jBioROWitzXhi8twOFZeOYY6MgRqoqpXAAv0Rpuz8-YJQ7slvUrfpfIQlRwyuidSy3Ebf-p5491ACMpwo7mHaRZJfIIbSE1PjPHz_CIbe3X-fb-p167xg8uRIvc--1uUiPYb2r0OJ9aHtwi0utc2sznVhion9n3UFn8RJVA</recordid><startdate>20241116</startdate><enddate>20241116</enddate><creator>Feng, Tiantian</creator><creator>Xu, Anfeng</creator><creator>Lahiri, Rimita</creator><creator>Tager-Flusberg, Helen</creator><creator>Kim, So Hyun</creator><creator>Bishop, Somer</creator><creator>Lord, Catherine</creator><creator>Narayanan, Shrikanth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241116</creationdate><title>Can Generic LLMs Help Analyze Child-adult Interactions Involving Children with Autism in Clinical Observation?</title><author>Feng, Tiantian ; Xu, Anfeng ; Lahiri, Rimita ; Tager-Flusberg, Helen ; Kim, So Hyun ; Bishop, Somer ; Lord, Catherine ; Narayanan, Shrikanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305082873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autism</topic><topic>Children</topic><topic>Context</topic><topic>Human communication</topic><topic>Human performance</topic><topic>Large language models</topic><topic>Performance evaluation</topic><topic>Skills</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Feng, Tiantian</creatorcontrib><creatorcontrib>Xu, Anfeng</creatorcontrib><creatorcontrib>Lahiri, Rimita</creatorcontrib><creatorcontrib>Tager-Flusberg, Helen</creatorcontrib><creatorcontrib>Kim, So Hyun</creatorcontrib><creatorcontrib>Bishop, Somer</creatorcontrib><creatorcontrib>Lord, Catherine</creatorcontrib><creatorcontrib>Narayanan, Shrikanth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Tiantian</au><au>Xu, Anfeng</au><au>Lahiri, Rimita</au><au>Tager-Flusberg, Helen</au><au>Kim, So Hyun</au><au>Bishop, Somer</au><au>Lord, Catherine</au><au>Narayanan, Shrikanth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Can Generic LLMs Help Analyze Child-adult Interactions Involving Children with Autism in Clinical Observation?</atitle><jtitle>arXiv.org</jtitle><date>2024-11-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large Language Models (LLMs) have shown significant potential in understanding human communication and interaction. However, their performance in the domain of child-inclusive interactions, including in clinical settings, remains less explored. In this work, we evaluate generic LLMs' ability to analyze child-adult dyadic interactions in a clinically relevant context involving children with ASD. Specifically, we explore LLMs in performing four tasks: classifying child-adult utterances, predicting engaged activities, recognizing language skills and understanding traits that are clinically relevant. Our evaluation shows that generic LLMs are highly capable of analyzing long and complex conversations in clinical observation sessions, often surpassing the performance of non-expert human evaluators. The results show their potential to segment interactions of interest, assist in language skills evaluation, identify engaged activities, and offer clinical-relevant context for assessments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3130508287
source Free E- Journals
subjects Autism
Children
Context
Human communication
Human performance
Large language models
Performance evaluation
Skills
Task complexity
title Can Generic LLMs Help Analyze Child-adult Interactions Involving Children with Autism in Clinical Observation?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Can%20Generic%20LLMs%20Help%20Analyze%20Child-adult%20Interactions%20Involving%20Children%20with%20Autism%20in%20Clinical%20Observation?&rft.jtitle=arXiv.org&rft.au=Feng,%20Tiantian&rft.date=2024-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130508287%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130508287&rft_id=info:pmid/&rfr_iscdi=true