Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance

There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Distel, J R, Dunton, E C, Durham, J M, Hayes, A C, Louis, W C, Martin, J D, Misch, G W, Mumpower, M R, Tang, Z, Thornton, R T, Turner, B T, R G Van De Water, Wilburn, W S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Distel, J R
Dunton, E C
Durham, J M
Hayes, A C
Louis, W C
Martin, J D
Misch, G W
Mumpower, M R
Tang, Z
Thornton, R T
Turner, B T
R G Van De Water
Wilburn, W S
description There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130506428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130506428</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305064283</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60VqYZNbcRRhBIUNFSBrmCMs2d5sfnr0UP0OosvrNgiZByl9WFECuWej9xzkW1F2UpE3ZpaUYNB2v12KswkgEaoMUY3GjIQyBoZqWjCgiP_JZDG3uNysETlSXj4YpuIPdSpscNWw5Ke0x_XbPtqbkfz5l19I7oQzdRdOZLndxJXvKqELX87_oAwA88ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130506428</pqid></control><display><type>article</type><title>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</title><source>Free E- Journals</source><creator>Distel, J R ; Dunton, E C ; Durham, J M ; Hayes, A C ; Louis, W C ; Martin, J D ; Misch, G W ; Mumpower, M R ; Tang, Z ; Thornton, R T ; Turner, B T ; R G Van De Water ; Wilburn, W S</creator><creatorcontrib>Distel, J R ; Dunton, E C ; Durham, J M ; Hayes, A C ; Louis, W C ; Martin, J D ; Misch, G W ; Mumpower, M R ; Tang, Z ; Thornton, R T ; Turner, B T ; R G Van De Water ; Wilburn, W S</creatorcontrib><description>There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beta decay ; Error analysis ; Error detection ; Explosives detection ; Neutrinos ; Neutron flux ; Nuclear fission ; Nuclear tests ; Nuclear weapons ; Performance evaluation ; Short pulses ; Target detection ; Time measurement</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Distel, J R</creatorcontrib><creatorcontrib>Dunton, E C</creatorcontrib><creatorcontrib>Durham, J M</creatorcontrib><creatorcontrib>Hayes, A C</creatorcontrib><creatorcontrib>Louis, W C</creatorcontrib><creatorcontrib>Martin, J D</creatorcontrib><creatorcontrib>Misch, G W</creatorcontrib><creatorcontrib>Mumpower, M R</creatorcontrib><creatorcontrib>Tang, Z</creatorcontrib><creatorcontrib>Thornton, R T</creatorcontrib><creatorcontrib>Turner, B T</creatorcontrib><creatorcontrib>R G Van De Water</creatorcontrib><creatorcontrib>Wilburn, W S</creatorcontrib><title>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</title><title>arXiv.org</title><description>There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.</description><subject>Beta decay</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Explosives detection</subject><subject>Neutrinos</subject><subject>Neutron flux</subject><subject>Nuclear fission</subject><subject>Nuclear tests</subject><subject>Nuclear weapons</subject><subject>Performance evaluation</subject><subject>Short pulses</subject><subject>Target detection</subject><subject>Time measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60VqYZNbcRRhBIUNFSBrmCMs2d5sfnr0UP0OosvrNgiZByl9WFECuWej9xzkW1F2UpE3ZpaUYNB2v12KswkgEaoMUY3GjIQyBoZqWjCgiP_JZDG3uNysETlSXj4YpuIPdSpscNWw5Ke0x_XbPtqbkfz5l19I7oQzdRdOZLndxJXvKqELX87_oAwA88ew</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Distel, J R</creator><creator>Dunton, E C</creator><creator>Durham, J M</creator><creator>Hayes, A C</creator><creator>Louis, W C</creator><creator>Martin, J D</creator><creator>Misch, G W</creator><creator>Mumpower, M R</creator><creator>Tang, Z</creator><creator>Thornton, R T</creator><creator>Turner, B T</creator><creator>R G Van De Water</creator><creator>Wilburn, W S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241118</creationdate><title>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</title><author>Distel, J R ; Dunton, E C ; Durham, J M ; Hayes, A C ; Louis, W C ; Martin, J D ; Misch, G W ; Mumpower, M R ; Tang, Z ; Thornton, R T ; Turner, B T ; R G Van De Water ; Wilburn, W S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305064283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beta decay</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Explosives detection</topic><topic>Neutrinos</topic><topic>Neutron flux</topic><topic>Nuclear fission</topic><topic>Nuclear tests</topic><topic>Nuclear weapons</topic><topic>Performance evaluation</topic><topic>Short pulses</topic><topic>Target detection</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Distel, J R</creatorcontrib><creatorcontrib>Dunton, E C</creatorcontrib><creatorcontrib>Durham, J M</creatorcontrib><creatorcontrib>Hayes, A C</creatorcontrib><creatorcontrib>Louis, W C</creatorcontrib><creatorcontrib>Martin, J D</creatorcontrib><creatorcontrib>Misch, G W</creatorcontrib><creatorcontrib>Mumpower, M R</creatorcontrib><creatorcontrib>Tang, Z</creatorcontrib><creatorcontrib>Thornton, R T</creatorcontrib><creatorcontrib>Turner, B T</creatorcontrib><creatorcontrib>R G Van De Water</creatorcontrib><creatorcontrib>Wilburn, W S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Distel, J R</au><au>Dunton, E C</au><au>Durham, J M</au><au>Hayes, A C</au><au>Louis, W C</au><au>Martin, J D</au><au>Misch, G W</au><au>Mumpower, M R</au><au>Tang, Z</au><au>Thornton, R T</au><au>Turner, B T</au><au>R G Van De Water</au><au>Wilburn, W S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</atitle><jtitle>arXiv.org</jtitle><date>2024-11-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3130506428
source Free E- Journals
subjects Beta decay
Error analysis
Error detection
Explosives detection
Neutrinos
Neutron flux
Nuclear fission
Nuclear tests
Nuclear weapons
Performance evaluation
Short pulses
Target detection
Time measurement
title Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Novel%20Application%20of%20Neutrinos%20to%20Evaluate%20U.S.%20Nuclear%20Weapons%20Performance&rft.jtitle=arXiv.org&rft.au=Distel,%20J%20R&rft.date=2024-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130506428%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130506428&rft_id=info:pmid/&rfr_iscdi=true