Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance
There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Distel, J R Dunton, E C Durham, J M Hayes, A C Louis, W C Martin, J D Misch, G W Mumpower, M R Tang, Z Thornton, R T Turner, B T R G Van De Water Wilburn, W S |
description | There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130506428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130506428</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305064283</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60VqYZNbcRRhBIUNFSBrmCMs2d5sfnr0UP0OosvrNgiZByl9WFECuWej9xzkW1F2UpE3ZpaUYNB2v12KswkgEaoMUY3GjIQyBoZqWjCgiP_JZDG3uNysETlSXj4YpuIPdSpscNWw5Ke0x_XbPtqbkfz5l19I7oQzdRdOZLndxJXvKqELX87_oAwA88ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130506428</pqid></control><display><type>article</type><title>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</title><source>Free E- Journals</source><creator>Distel, J R ; Dunton, E C ; Durham, J M ; Hayes, A C ; Louis, W C ; Martin, J D ; Misch, G W ; Mumpower, M R ; Tang, Z ; Thornton, R T ; Turner, B T ; R G Van De Water ; Wilburn, W S</creator><creatorcontrib>Distel, J R ; Dunton, E C ; Durham, J M ; Hayes, A C ; Louis, W C ; Martin, J D ; Misch, G W ; Mumpower, M R ; Tang, Z ; Thornton, R T ; Turner, B T ; R G Van De Water ; Wilburn, W S</creatorcontrib><description>There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beta decay ; Error analysis ; Error detection ; Explosives detection ; Neutrinos ; Neutron flux ; Nuclear fission ; Nuclear tests ; Nuclear weapons ; Performance evaluation ; Short pulses ; Target detection ; Time measurement</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Distel, J R</creatorcontrib><creatorcontrib>Dunton, E C</creatorcontrib><creatorcontrib>Durham, J M</creatorcontrib><creatorcontrib>Hayes, A C</creatorcontrib><creatorcontrib>Louis, W C</creatorcontrib><creatorcontrib>Martin, J D</creatorcontrib><creatorcontrib>Misch, G W</creatorcontrib><creatorcontrib>Mumpower, M R</creatorcontrib><creatorcontrib>Tang, Z</creatorcontrib><creatorcontrib>Thornton, R T</creatorcontrib><creatorcontrib>Turner, B T</creatorcontrib><creatorcontrib>R G Van De Water</creatorcontrib><creatorcontrib>Wilburn, W S</creatorcontrib><title>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</title><title>arXiv.org</title><description>There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.</description><subject>Beta decay</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Explosives detection</subject><subject>Neutrinos</subject><subject>Neutron flux</subject><subject>Nuclear fission</subject><subject>Nuclear tests</subject><subject>Nuclear weapons</subject><subject>Performance evaluation</subject><subject>Short pulses</subject><subject>Target detection</subject><subject>Time measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60VqYZNbcRRhBIUNFSBrmCMs2d5sfnr0UP0OosvrNgiZByl9WFECuWej9xzkW1F2UpE3ZpaUYNB2v12KswkgEaoMUY3GjIQyBoZqWjCgiP_JZDG3uNysETlSXj4YpuIPdSpscNWw5Ke0x_XbPtqbkfz5l19I7oQzdRdOZLndxJXvKqELX87_oAwA88ew</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Distel, J R</creator><creator>Dunton, E C</creator><creator>Durham, J M</creator><creator>Hayes, A C</creator><creator>Louis, W C</creator><creator>Martin, J D</creator><creator>Misch, G W</creator><creator>Mumpower, M R</creator><creator>Tang, Z</creator><creator>Thornton, R T</creator><creator>Turner, B T</creator><creator>R G Van De Water</creator><creator>Wilburn, W S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241118</creationdate><title>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</title><author>Distel, J R ; Dunton, E C ; Durham, J M ; Hayes, A C ; Louis, W C ; Martin, J D ; Misch, G W ; Mumpower, M R ; Tang, Z ; Thornton, R T ; Turner, B T ; R G Van De Water ; Wilburn, W S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305064283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Beta decay</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Explosives detection</topic><topic>Neutrinos</topic><topic>Neutron flux</topic><topic>Nuclear fission</topic><topic>Nuclear tests</topic><topic>Nuclear weapons</topic><topic>Performance evaluation</topic><topic>Short pulses</topic><topic>Target detection</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Distel, J R</creatorcontrib><creatorcontrib>Dunton, E C</creatorcontrib><creatorcontrib>Durham, J M</creatorcontrib><creatorcontrib>Hayes, A C</creatorcontrib><creatorcontrib>Louis, W C</creatorcontrib><creatorcontrib>Martin, J D</creatorcontrib><creatorcontrib>Misch, G W</creatorcontrib><creatorcontrib>Mumpower, M R</creatorcontrib><creatorcontrib>Tang, Z</creatorcontrib><creatorcontrib>Thornton, R T</creatorcontrib><creatorcontrib>Turner, B T</creatorcontrib><creatorcontrib>R G Van De Water</creatorcontrib><creatorcontrib>Wilburn, W S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Distel, J R</au><au>Dunton, E C</au><au>Durham, J M</au><au>Hayes, A C</au><au>Louis, W C</au><au>Martin, J D</au><au>Misch, G W</au><au>Mumpower, M R</au><au>Tang, Z</au><au>Thornton, R T</au><au>Turner, B T</au><au>R G Van De Water</au><au>Wilburn, W S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance</atitle><jtitle>arXiv.org</jtitle><date>2024-11-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>There is a growing realization that neutrinos can be used as a diagnostic tool to better understand the inner workings of a nuclear weapon. Robust estimates demonstrate that an Inverse Beta Decay (IBD) neutrino scintillation detector built at the Nevada Test Site of 1000-ton active target mass at a standoff distance of 500 m would detect thousands of neutrino events per kTe of nuclear yield. This would provide less than 4% statistical error on measured neutrino rate and 5% error on neutrino energy. Extrapolating this to an error on the test device explosive yield requires knowledge from evaluated nuclear databases, non-equilibrium fission rates, and assumptions on internal neutron fluxes. Initial calculations demonstrate that prompt neutrino rates from a short pulse of Pu-239 fission is about a factor of two less than that from a steady state assumption. As well, there are significant energy spectral differences as a function of time after the pulse that needs to be considered. In the absence of nuclear weapons testing, many of the technical and theoretical challenges of a full nuclear test could be mitigated with a low cost smaller scale 20 ton fiducial mass IBD demonstration detector placed near a TRIGA pulsed reactor. The short duty cycle and repeatability of pulses would provide critical real environment testing and the measured neutrino rate as a function of time data would provide unique constraints on fission databases and equilibrium assumptions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3130506428 |
source | Free E- Journals |
subjects | Beta decay Error analysis Error detection Explosives detection Neutrinos Neutron flux Nuclear fission Nuclear tests Nuclear weapons Performance evaluation Short pulses Target detection Time measurement |
title | Novel Application of Neutrinos to Evaluate U.S. Nuclear Weapons Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Novel%20Application%20of%20Neutrinos%20to%20Evaluate%20U.S.%20Nuclear%20Weapons%20Performance&rft.jtitle=arXiv.org&rft.au=Distel,%20J%20R&rft.date=2024-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130506428%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130506428&rft_id=info:pmid/&rfr_iscdi=true |