A Millimeter-Wave Superconducting Qubit

Manipulating the electromagnetic spectrum at the single-photon level is fundamental for quantum experiments. In the visible and infrared range, this can be accomplished with atomic quantum emitters, and with superconducting qubits such control is extended to the microwave range (below 10 GHz). Meanw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Anferov, Alexander, Wan, Fanghui, Harvey, Shannon P, Simon, Jonathan, Schuster, David I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Anferov, Alexander
Wan, Fanghui
Harvey, Shannon P
Simon, Jonathan
Schuster, David I
description Manipulating the electromagnetic spectrum at the single-photon level is fundamental for quantum experiments. In the visible and infrared range, this can be accomplished with atomic quantum emitters, and with superconducting qubits such control is extended to the microwave range (below 10 GHz). Meanwhile, the region between these two energy ranges presents an unexplored opportunity for innovation. We bridge this gap by scaling up a superconducting qubit to the millimeter-wave range (near 100 GHz). Working in this energy range greatly reduces sensitivity to thermal noise compared to microwave devices, enabling operation at significantly higher temperatures, up to 1 K. This has many advantages by removing the dependence on rare \(^3\)He for refrigeration, simplifying cryogenic systems, and providing orders of magnitude higher cooling power, lending the flexibility needed for novel quantum sensing and hybrid experiments. Using low-loss niobium trilayer junctions, we realize a qubit at 72 GHz cooled to 0.87 K using only \(^4\)He. We perform Rabi oscillations to establish control over the qubit state, and measure relaxation and dephasing times of 15.8 and 17.4 ns respectively. This demonstration of a millimeter-wave quantum emitter offers exciting prospects for enhanced sensitivity thresholds in high-frequency photon detection, provides new options for quantum transduction and for scaling up and speeding up quantum computing, enables integration of quantum systems where \(^3\)He refrigeration units are impractical, and importantly paves the way for quantum experiments exploring a novel energy range.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3130503818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130503818</sourcerecordid><originalsourceid>FETCH-proquest_journals_31305038183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd1TwzczJycxNLUkt0g1PLEtVCC4tSC1Kzs9LKU0uycxLVwgsTcos4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDYwNTA2MLQwtj4lQBAGMEL6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130503818</pqid></control><display><type>article</type><title>A Millimeter-Wave Superconducting Qubit</title><source>Free E- Journals</source><creator>Anferov, Alexander ; Wan, Fanghui ; Harvey, Shannon P ; Simon, Jonathan ; Schuster, David I</creator><creatorcontrib>Anferov, Alexander ; Wan, Fanghui ; Harvey, Shannon P ; Simon, Jonathan ; Schuster, David I</creatorcontrib><description>Manipulating the electromagnetic spectrum at the single-photon level is fundamental for quantum experiments. In the visible and infrared range, this can be accomplished with atomic quantum emitters, and with superconducting qubits such control is extended to the microwave range (below 10 GHz). Meanwhile, the region between these two energy ranges presents an unexplored opportunity for innovation. We bridge this gap by scaling up a superconducting qubit to the millimeter-wave range (near 100 GHz). Working in this energy range greatly reduces sensitivity to thermal noise compared to microwave devices, enabling operation at significantly higher temperatures, up to 1 K. This has many advantages by removing the dependence on rare \(^3\)He for refrigeration, simplifying cryogenic systems, and providing orders of magnitude higher cooling power, lending the flexibility needed for novel quantum sensing and hybrid experiments. Using low-loss niobium trilayer junctions, we realize a qubit at 72 GHz cooled to 0.87 K using only \(^4\)He. We perform Rabi oscillations to establish control over the qubit state, and measure relaxation and dephasing times of 15.8 and 17.4 ns respectively. This demonstration of a millimeter-wave quantum emitter offers exciting prospects for enhanced sensitivity thresholds in high-frequency photon detection, provides new options for quantum transduction and for scaling up and speeding up quantum computing, enables integration of quantum systems where \(^3\)He refrigeration units are impractical, and importantly paves the way for quantum experiments exploring a novel energy range.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cryogenic cooling ; Electrons ; Emitters ; Energy gap ; Infrared radiation ; Millimeter waves ; Niobium ; Noise sensitivity ; Photons ; Quantum computing ; Qubits (quantum computing) ; Refrigeration ; Scaling up ; Superconductivity ; Thermal noise</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Anferov, Alexander</creatorcontrib><creatorcontrib>Wan, Fanghui</creatorcontrib><creatorcontrib>Harvey, Shannon P</creatorcontrib><creatorcontrib>Simon, Jonathan</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><title>A Millimeter-Wave Superconducting Qubit</title><title>arXiv.org</title><description>Manipulating the electromagnetic spectrum at the single-photon level is fundamental for quantum experiments. In the visible and infrared range, this can be accomplished with atomic quantum emitters, and with superconducting qubits such control is extended to the microwave range (below 10 GHz). Meanwhile, the region between these two energy ranges presents an unexplored opportunity for innovation. We bridge this gap by scaling up a superconducting qubit to the millimeter-wave range (near 100 GHz). Working in this energy range greatly reduces sensitivity to thermal noise compared to microwave devices, enabling operation at significantly higher temperatures, up to 1 K. This has many advantages by removing the dependence on rare \(^3\)He for refrigeration, simplifying cryogenic systems, and providing orders of magnitude higher cooling power, lending the flexibility needed for novel quantum sensing and hybrid experiments. Using low-loss niobium trilayer junctions, we realize a qubit at 72 GHz cooled to 0.87 K using only \(^4\)He. We perform Rabi oscillations to establish control over the qubit state, and measure relaxation and dephasing times of 15.8 and 17.4 ns respectively. This demonstration of a millimeter-wave quantum emitter offers exciting prospects for enhanced sensitivity thresholds in high-frequency photon detection, provides new options for quantum transduction and for scaling up and speeding up quantum computing, enables integration of quantum systems where \(^3\)He refrigeration units are impractical, and importantly paves the way for quantum experiments exploring a novel energy range.</description><subject>Cryogenic cooling</subject><subject>Electrons</subject><subject>Emitters</subject><subject>Energy gap</subject><subject>Infrared radiation</subject><subject>Millimeter waves</subject><subject>Niobium</subject><subject>Noise sensitivity</subject><subject>Photons</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Refrigeration</subject><subject>Scaling up</subject><subject>Superconductivity</subject><subject>Thermal noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQd1TwzczJycxNLUkt0g1PLEtVCC4tSC1Kzs9LKU0uycxLVwgsTcos4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGNDYwNTA2MLQwtj4lQBAGMEL6M</recordid><startdate>20241117</startdate><enddate>20241117</enddate><creator>Anferov, Alexander</creator><creator>Wan, Fanghui</creator><creator>Harvey, Shannon P</creator><creator>Simon, Jonathan</creator><creator>Schuster, David I</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241117</creationdate><title>A Millimeter-Wave Superconducting Qubit</title><author>Anferov, Alexander ; Wan, Fanghui ; Harvey, Shannon P ; Simon, Jonathan ; Schuster, David I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31305038183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryogenic cooling</topic><topic>Electrons</topic><topic>Emitters</topic><topic>Energy gap</topic><topic>Infrared radiation</topic><topic>Millimeter waves</topic><topic>Niobium</topic><topic>Noise sensitivity</topic><topic>Photons</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Refrigeration</topic><topic>Scaling up</topic><topic>Superconductivity</topic><topic>Thermal noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Anferov, Alexander</creatorcontrib><creatorcontrib>Wan, Fanghui</creatorcontrib><creatorcontrib>Harvey, Shannon P</creatorcontrib><creatorcontrib>Simon, Jonathan</creatorcontrib><creatorcontrib>Schuster, David I</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anferov, Alexander</au><au>Wan, Fanghui</au><au>Harvey, Shannon P</au><au>Simon, Jonathan</au><au>Schuster, David I</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Millimeter-Wave Superconducting Qubit</atitle><jtitle>arXiv.org</jtitle><date>2024-11-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Manipulating the electromagnetic spectrum at the single-photon level is fundamental for quantum experiments. In the visible and infrared range, this can be accomplished with atomic quantum emitters, and with superconducting qubits such control is extended to the microwave range (below 10 GHz). Meanwhile, the region between these two energy ranges presents an unexplored opportunity for innovation. We bridge this gap by scaling up a superconducting qubit to the millimeter-wave range (near 100 GHz). Working in this energy range greatly reduces sensitivity to thermal noise compared to microwave devices, enabling operation at significantly higher temperatures, up to 1 K. This has many advantages by removing the dependence on rare \(^3\)He for refrigeration, simplifying cryogenic systems, and providing orders of magnitude higher cooling power, lending the flexibility needed for novel quantum sensing and hybrid experiments. Using low-loss niobium trilayer junctions, we realize a qubit at 72 GHz cooled to 0.87 K using only \(^4\)He. We perform Rabi oscillations to establish control over the qubit state, and measure relaxation and dephasing times of 15.8 and 17.4 ns respectively. This demonstration of a millimeter-wave quantum emitter offers exciting prospects for enhanced sensitivity thresholds in high-frequency photon detection, provides new options for quantum transduction and for scaling up and speeding up quantum computing, enables integration of quantum systems where \(^3\)He refrigeration units are impractical, and importantly paves the way for quantum experiments exploring a novel energy range.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3130503818
source Free E- Journals
subjects Cryogenic cooling
Electrons
Emitters
Energy gap
Infrared radiation
Millimeter waves
Niobium
Noise sensitivity
Photons
Quantum computing
Qubits (quantum computing)
Refrigeration
Scaling up
Superconductivity
Thermal noise
title A Millimeter-Wave Superconducting Qubit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Millimeter-Wave%20Superconducting%20Qubit&rft.jtitle=arXiv.org&rft.au=Anferov,%20Alexander&rft.date=2024-11-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3130503818%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130503818&rft_id=info:pmid/&rfr_iscdi=true