Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications

Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2024-11, Vol.56 (12), Article 1923
Hauptverfasser: Anindo, Adonijah, Mulama, Austine A., Otieno, Francis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Optical and quantum electronics
container_volume 56
creator Anindo, Adonijah
Mulama, Austine A.
Otieno, Francis
description Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC 71 BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC 71 BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC 71 BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC 71 BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.
doi_str_mv 10.1007/s11082-024-06524-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130126329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130126329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1152-f234ca2235d979fcf8bbfa4ae33d9bc642427ec147dc0764b6e60828a8ad52ea3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWAf8k8QJO6gKRWpFF4DYWY5jt66S2NguEpyAY-M2SLBiMzMavfdG8yXJOYKXCEJ65RGCJU4hzlJY5LHig2SEcorTEtHXwz_zcXLi_QZCWGQ5HCVfjzboTn_KBpg4Cd4C3jegM86uTWtW-411xkoXtPTAKBDWugeL6SxdLl-uwXJC0e0CKN12HjTSGq_DLqwHq5Z7D_y29sHxEL3KOBBTg3k3beBaAG5tGw8EbXp_mhwp3np59tPHyfPd9GkyS-eP9w-Tm3kqEMpxqjDJBMeY5E1FKyVUWdeKZ1wS0lS1KDKcYSoFymgjIC2yupBFJFPykjc5lpyMk4shNz71tpU-sI3Zuj6eZAQRiHBBcBVVeFAJZ7x3UjHrdMfdB0OQ7YizgTiLxNmeOMPRRAaTj-J-Jd1v9D-ubxsshf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130126329</pqid></control><display><type>article</type><title>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Anindo, Adonijah ; Mulama, Austine A. ; Otieno, Francis</creator><creatorcontrib>Anindo, Adonijah ; Mulama, Austine A. ; Otieno, Francis</creatorcontrib><description>Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC 71 BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC 71 BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC 71 BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC 71 BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.</description><identifier>ISSN: 1572-817X</identifier><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-024-06524-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Butyric acid ; Characterization and Evaluation of Materials ; Charge deposition ; Charge materials ; Charge transfer ; Computer Communication Networks ; Current carriers ; Diffusion coating ; Diffusion layers ; Diffusion length ; Electrical Engineering ; Electromagnetic absorption ; Electron spin ; Excitons ; Glass substrates ; Heterojunctions ; Homogeneity ; Insulators ; Lasers ; Morphology ; Optical Devices ; Optical properties ; Optics ; Parameters ; Photoluminescence ; Photon absorption ; Photonic band gaps ; Photonics ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Plant layout ; Quenching ; Solar cells ; Thin films</subject><ispartof>Optical and quantum electronics, 2024-11, Vol.56 (12), Article 1923</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1152-f234ca2235d979fcf8bbfa4ae33d9bc642427ec147dc0764b6e60828a8ad52ea3</cites><orcidid>0009-0005-5044-873X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-024-06524-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-024-06524-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Anindo, Adonijah</creatorcontrib><creatorcontrib>Mulama, Austine A.</creatorcontrib><creatorcontrib>Otieno, Francis</creatorcontrib><title>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC 71 BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC 71 BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC 71 BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC 71 BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.</description><subject>Butyric acid</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge deposition</subject><subject>Charge materials</subject><subject>Charge transfer</subject><subject>Computer Communication Networks</subject><subject>Current carriers</subject><subject>Diffusion coating</subject><subject>Diffusion layers</subject><subject>Diffusion length</subject><subject>Electrical Engineering</subject><subject>Electromagnetic absorption</subject><subject>Electron spin</subject><subject>Excitons</subject><subject>Glass substrates</subject><subject>Heterojunctions</subject><subject>Homogeneity</subject><subject>Insulators</subject><subject>Lasers</subject><subject>Morphology</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photoluminescence</subject><subject>Photon absorption</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plant layout</subject><subject>Quenching</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>1572-817X</issn><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWAf8k8QJO6gKRWpFF4DYWY5jt66S2NguEpyAY-M2SLBiMzMavfdG8yXJOYKXCEJ65RGCJU4hzlJY5LHig2SEcorTEtHXwz_zcXLi_QZCWGQ5HCVfjzboTn_KBpg4Cd4C3jegM86uTWtW-411xkoXtPTAKBDWugeL6SxdLl-uwXJC0e0CKN12HjTSGq_DLqwHq5Z7D_y29sHxEL3KOBBTg3k3beBaAG5tGw8EbXp_mhwp3np59tPHyfPd9GkyS-eP9w-Tm3kqEMpxqjDJBMeY5E1FKyVUWdeKZ1wS0lS1KDKcYSoFymgjIC2yupBFJFPykjc5lpyMk4shNz71tpU-sI3Zuj6eZAQRiHBBcBVVeFAJZ7x3UjHrdMfdB0OQ7YizgTiLxNmeOMPRRAaTj-J-Jd1v9D-ubxsshf0</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Anindo, Adonijah</creator><creator>Mulama, Austine A.</creator><creator>Otieno, Francis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5044-873X</orcidid></search><sort><creationdate>20241118</creationdate><title>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</title><author>Anindo, Adonijah ; Mulama, Austine A. ; Otieno, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1152-f234ca2235d979fcf8bbfa4ae33d9bc642427ec147dc0764b6e60828a8ad52ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Butyric acid</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge deposition</topic><topic>Charge materials</topic><topic>Charge transfer</topic><topic>Computer Communication Networks</topic><topic>Current carriers</topic><topic>Diffusion coating</topic><topic>Diffusion layers</topic><topic>Diffusion length</topic><topic>Electrical Engineering</topic><topic>Electromagnetic absorption</topic><topic>Electron spin</topic><topic>Excitons</topic><topic>Glass substrates</topic><topic>Heterojunctions</topic><topic>Homogeneity</topic><topic>Insulators</topic><topic>Lasers</topic><topic>Morphology</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photoluminescence</topic><topic>Photon absorption</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plant layout</topic><topic>Quenching</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anindo, Adonijah</creatorcontrib><creatorcontrib>Mulama, Austine A.</creatorcontrib><creatorcontrib>Otieno, Francis</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anindo, Adonijah</au><au>Mulama, Austine A.</au><au>Otieno, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024-11-18</date><risdate>2024</risdate><volume>56</volume><issue>12</issue><artnum>1923</artnum><issn>1572-817X</issn><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC 71 BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC 71 BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC 71 BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC 71 BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-024-06524-2</doi><orcidid>https://orcid.org/0009-0005-5044-873X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1572-817X
ispartof Optical and quantum electronics, 2024-11, Vol.56 (12), Article 1923
issn 1572-817X
0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_3130126329
source SpringerLink Journals - AutoHoldings
subjects Butyric acid
Characterization and Evaluation of Materials
Charge deposition
Charge materials
Charge transfer
Computer Communication Networks
Current carriers
Diffusion coating
Diffusion layers
Diffusion length
Electrical Engineering
Electromagnetic absorption
Electron spin
Excitons
Glass substrates
Heterojunctions
Homogeneity
Insulators
Lasers
Morphology
Optical Devices
Optical properties
Optics
Parameters
Photoluminescence
Photon absorption
Photonic band gaps
Photonics
Photovoltaic cells
Physics
Physics and Astronomy
Plant layout
Quenching
Solar cells
Thin films
title Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20optical%20and%20morphological%20properties%20of%20thin%20MEH-PPV:%20PC71BM%20films%20deposited%20on%20glass%20substrates%20for%20photovoltaic%20applications&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Anindo,%20Adonijah&rft.date=2024-11-18&rft.volume=56&rft.issue=12&rft.artnum=1923&rft.issn=1572-817X&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-024-06524-2&rft_dat=%3Cproquest_cross%3E3130126329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130126329&rft_id=info:pmid/&rfr_iscdi=true