Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications
Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2024-11, Vol.56 (12), Article 1923 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 56 |
creator | Anindo, Adonijah Mulama, Austine A. Otieno, Francis |
description | Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC
71
BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC
71
BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC
71
BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC
71
BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells. |
doi_str_mv | 10.1007/s11082-024-06524-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130126329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130126329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1152-f234ca2235d979fcf8bbfa4ae33d9bc642427ec147dc0764b6e60828a8ad52ea3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhSMEEqVwAVaWWAf8k8QJO6gKRWpFF4DYWY5jt66S2NguEpyAY-M2SLBiMzMavfdG8yXJOYKXCEJ65RGCJU4hzlJY5LHig2SEcorTEtHXwz_zcXLi_QZCWGQ5HCVfjzboTn_KBpg4Cd4C3jegM86uTWtW-411xkoXtPTAKBDWugeL6SxdLl-uwXJC0e0CKN12HjTSGq_DLqwHq5Z7D_y29sHxEL3KOBBTg3k3beBaAG5tGw8EbXp_mhwp3np59tPHyfPd9GkyS-eP9w-Tm3kqEMpxqjDJBMeY5E1FKyVUWdeKZ1wS0lS1KDKcYSoFymgjIC2yupBFJFPykjc5lpyMk4shNz71tpU-sI3Zuj6eZAQRiHBBcBVVeFAJZ7x3UjHrdMfdB0OQ7YizgTiLxNmeOMPRRAaTj-J-Jd1v9D-ubxsshf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130126329</pqid></control><display><type>article</type><title>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Anindo, Adonijah ; Mulama, Austine A. ; Otieno, Francis</creator><creatorcontrib>Anindo, Adonijah ; Mulama, Austine A. ; Otieno, Francis</creatorcontrib><description>Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC
71
BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC
71
BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC
71
BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC
71
BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.</description><identifier>ISSN: 1572-817X</identifier><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-024-06524-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Butyric acid ; Characterization and Evaluation of Materials ; Charge deposition ; Charge materials ; Charge transfer ; Computer Communication Networks ; Current carriers ; Diffusion coating ; Diffusion layers ; Diffusion length ; Electrical Engineering ; Electromagnetic absorption ; Electron spin ; Excitons ; Glass substrates ; Heterojunctions ; Homogeneity ; Insulators ; Lasers ; Morphology ; Optical Devices ; Optical properties ; Optics ; Parameters ; Photoluminescence ; Photon absorption ; Photonic band gaps ; Photonics ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Plant layout ; Quenching ; Solar cells ; Thin films</subject><ispartof>Optical and quantum electronics, 2024-11, Vol.56 (12), Article 1923</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1152-f234ca2235d979fcf8bbfa4ae33d9bc642427ec147dc0764b6e60828a8ad52ea3</cites><orcidid>0009-0005-5044-873X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-024-06524-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-024-06524-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Anindo, Adonijah</creatorcontrib><creatorcontrib>Mulama, Austine A.</creatorcontrib><creatorcontrib>Otieno, Francis</creatorcontrib><title>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC
71
BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC
71
BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC
71
BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC
71
BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.</description><subject>Butyric acid</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge deposition</subject><subject>Charge materials</subject><subject>Charge transfer</subject><subject>Computer Communication Networks</subject><subject>Current carriers</subject><subject>Diffusion coating</subject><subject>Diffusion layers</subject><subject>Diffusion length</subject><subject>Electrical Engineering</subject><subject>Electromagnetic absorption</subject><subject>Electron spin</subject><subject>Excitons</subject><subject>Glass substrates</subject><subject>Heterojunctions</subject><subject>Homogeneity</subject><subject>Insulators</subject><subject>Lasers</subject><subject>Morphology</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Parameters</subject><subject>Photoluminescence</subject><subject>Photon absorption</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plant layout</subject><subject>Quenching</subject><subject>Solar cells</subject><subject>Thin films</subject><issn>1572-817X</issn><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhSMEEqVwAVaWWAf8k8QJO6gKRWpFF4DYWY5jt66S2NguEpyAY-M2SLBiMzMavfdG8yXJOYKXCEJ65RGCJU4hzlJY5LHig2SEcorTEtHXwz_zcXLi_QZCWGQ5HCVfjzboTn_KBpg4Cd4C3jegM86uTWtW-411xkoXtPTAKBDWugeL6SxdLl-uwXJC0e0CKN12HjTSGq_DLqwHq5Z7D_y29sHxEL3KOBBTg3k3beBaAG5tGw8EbXp_mhwp3np59tPHyfPd9GkyS-eP9w-Tm3kqEMpxqjDJBMeY5E1FKyVUWdeKZ1wS0lS1KDKcYSoFymgjIC2yupBFJFPykjc5lpyMk4shNz71tpU-sI3Zuj6eZAQRiHBBcBVVeFAJZ7x3UjHrdMfdB0OQ7YizgTiLxNmeOMPRRAaTj-J-Jd1v9D-ubxsshf0</recordid><startdate>20241118</startdate><enddate>20241118</enddate><creator>Anindo, Adonijah</creator><creator>Mulama, Austine A.</creator><creator>Otieno, Francis</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5044-873X</orcidid></search><sort><creationdate>20241118</creationdate><title>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</title><author>Anindo, Adonijah ; Mulama, Austine A. ; Otieno, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1152-f234ca2235d979fcf8bbfa4ae33d9bc642427ec147dc0764b6e60828a8ad52ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Butyric acid</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge deposition</topic><topic>Charge materials</topic><topic>Charge transfer</topic><topic>Computer Communication Networks</topic><topic>Current carriers</topic><topic>Diffusion coating</topic><topic>Diffusion layers</topic><topic>Diffusion length</topic><topic>Electrical Engineering</topic><topic>Electromagnetic absorption</topic><topic>Electron spin</topic><topic>Excitons</topic><topic>Glass substrates</topic><topic>Heterojunctions</topic><topic>Homogeneity</topic><topic>Insulators</topic><topic>Lasers</topic><topic>Morphology</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Parameters</topic><topic>Photoluminescence</topic><topic>Photon absorption</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plant layout</topic><topic>Quenching</topic><topic>Solar cells</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anindo, Adonijah</creatorcontrib><creatorcontrib>Mulama, Austine A.</creatorcontrib><creatorcontrib>Otieno, Francis</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anindo, Adonijah</au><au>Mulama, Austine A.</au><au>Otieno, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024-11-18</date><risdate>2024</risdate><volume>56</volume><issue>12</issue><artnum>1923</artnum><issn>1572-817X</issn><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Organic solar cells (OSCs) made of at least two electronically dissimilar molecules have attracted a lot of attention due to their low-cost solution manufacturing and color tunability. Bulk-heterojunction active layer usually achieved through spin-coating provide an appealing technique. These cells generate Frenkel excitons through photo-absorption in one molecule combined with acceptor resulting in the formation of free charge carriers that emerge after exciton dissociation at the donor–acceptor interface. These processes highly depend on optimization of the blend composition and deposition parameters such that we form an interpenetrating bi-continuous network with the domain sizes roughly twice of the exciton diffusion length. The choice of materials plays a major role in ensuring that sufficient energy offset at the donor/acceptor interface leads to an efficient charge separation. The study focused on probing a blend of poly [2-methoxy-5-(2’-ethylhexyloxy)-1, 4-phenylenevinylene (MEH-PPV) and fullerene derivatives of phenyl-C71-butyric acid methyl ester (PC
71
BM) forming a bulk heterojunction active layer. We investigate the optical and morphological properties of MEH-PPV: PC
71
BM spin-coated films at varied spin-coating parameters such as spin-rates and spin-step as well as blend properties including solution concentration, deposition techniques and donor–acceptor blend ratios. We related how deposition parameters affect the exciton quenching capabilities at donor–acceptor interface, film-surface homogeneity and light absorption in deposited films. From the optimized results obtained, deep photoluminescence quenching was observed for MEH-PPV doped with 75% PC
71
BM in addition to reduced optical band gap energy (1.88 eV), a signature of improved charge transfer rate and photon-absorption. The optimized MEH-PPV: PC
71
BM systems are possible candidates for photovoltaic applications especially in the production of thin organic photovoltaic solar cells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-024-06524-2</doi><orcidid>https://orcid.org/0009-0005-5044-873X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1572-817X |
ispartof | Optical and quantum electronics, 2024-11, Vol.56 (12), Article 1923 |
issn | 1572-817X 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_3130126329 |
source | SpringerLink Journals - AutoHoldings |
subjects | Butyric acid Characterization and Evaluation of Materials Charge deposition Charge materials Charge transfer Computer Communication Networks Current carriers Diffusion coating Diffusion layers Diffusion length Electrical Engineering Electromagnetic absorption Electron spin Excitons Glass substrates Heterojunctions Homogeneity Insulators Lasers Morphology Optical Devices Optical properties Optics Parameters Photoluminescence Photon absorption Photonic band gaps Photonics Photovoltaic cells Physics Physics and Astronomy Plant layout Quenching Solar cells Thin films |
title | Optimized optical and morphological properties of thin MEH-PPV: PC71BM films deposited on glass substrates for photovoltaic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20optical%20and%20morphological%20properties%20of%20thin%20MEH-PPV:%20PC71BM%20films%20deposited%20on%20glass%20substrates%20for%20photovoltaic%20applications&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Anindo,%20Adonijah&rft.date=2024-11-18&rft.volume=56&rft.issue=12&rft.artnum=1923&rft.issn=1572-817X&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-024-06524-2&rft_dat=%3Cproquest_cross%3E3130126329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130126329&rft_id=info:pmid/&rfr_iscdi=true |