Metamorphic epitaxial materials
Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in re...
Gespeichert in:
Veröffentlicht in: | MRS bulletin 2016-03, Vol.41 (3), p.193-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 3 |
container_start_page | 193 |
container_title | MRS bulletin |
container_volume | 41 |
creator | Richardson, Christopher J.K. Lee, Minjoo Larry |
description | Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance. |
doi_str_mv | 10.1557/mrs.2016.7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130126247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2016_7</cupid><sourcerecordid>3983488861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRMFY3_gEL7tTEO-_MUoovqLjQ_TAzvakppokzKei_NyVduJCuvrs4nAuHkHMKBZVS3zYxFQyoKvQByajhZU4Fk4ckg7LkuVZGHJOTlFYAVIKWGbl4wd41bew-6jDFru7dd-0-p43rMQ5HOiVH1TB4ttsJeXu4f5895fPXx-fZ3TwP3Og-X3hqgtAKqHcqIKskE84FEzwKbvxCIzAJASutKiN9AFCcc5SlA1F6PiGXo7WL7dcGU29X7Sauh4eWUw6UKSb0PopqzVRJFVMDdTVSIbYpRaxsF-vGxR9LwW4j2SGS3UayW-X1CKcBWi8x_lH-R9_s1K7xsV4scS_-C5ZAdbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772681626</pqid></control><display><type>article</type><title>Metamorphic epitaxial materials</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Richardson, Christopher J.K. ; Lee, Minjoo Larry</creator><creatorcontrib>Richardson, Christopher J.K. ; Lee, Minjoo Larry</creatorcontrib><description>Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2016.7</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Characterization and Evaluation of Materials ; Crystal defects ; Crystal dislocations ; Crystal growth ; Crystal lattices ; Crystal structure ; Design ; Designers ; Dislocation density ; Electrons ; Energy Materials ; Engineers ; Epitaxial growth ; Film growth ; Materials Engineering ; Materials Science ; Metamorphic Epitaxial Materials ; Misfit dislocations ; Nanotechnology ; Paradigms ; Photovoltaic cells ; Quantum computing ; Quantum dots ; Semiconductors ; Single crystals ; Strain ; Substrates ; Thin films ; Transistors</subject><ispartof>MRS bulletin, 2016-03, Vol.41 (3), p.193-198</ispartof><rights>Copyright © Materials Research Society 2016</rights><rights>The Materials Research Society 2016</rights><rights>The Materials Research Society 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</citedby><cites>FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2016.7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769416000075/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Richardson, Christopher J.K.</creatorcontrib><creatorcontrib>Lee, Minjoo Larry</creatorcontrib><title>Metamorphic epitaxial materials</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.</description><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Design</subject><subject>Designers</subject><subject>Dislocation density</subject><subject>Electrons</subject><subject>Energy Materials</subject><subject>Engineers</subject><subject>Epitaxial growth</subject><subject>Film growth</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metamorphic Epitaxial Materials</subject><subject>Misfit dislocations</subject><subject>Nanotechnology</subject><subject>Paradigms</subject><subject>Photovoltaic cells</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Strain</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLw0AURgdRMFY3_gEL7tTEO-_MUoovqLjQ_TAzvakppokzKei_NyVduJCuvrs4nAuHkHMKBZVS3zYxFQyoKvQByajhZU4Fk4ckg7LkuVZGHJOTlFYAVIKWGbl4wd41bew-6jDFru7dd-0-p43rMQ5HOiVH1TB4ttsJeXu4f5895fPXx-fZ3TwP3Og-X3hqgtAKqHcqIKskE84FEzwKbvxCIzAJASutKiN9AFCcc5SlA1F6PiGXo7WL7dcGU29X7Sauh4eWUw6UKSb0PopqzVRJFVMDdTVSIbYpRaxsF-vGxR9LwW4j2SGS3UayW-X1CKcBWi8x_lH-R9_s1K7xsV4scS_-C5ZAdbw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Richardson, Christopher J.K.</creator><creator>Lee, Minjoo Larry</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20160301</creationdate><title>Metamorphic epitaxial materials</title><author>Richardson, Christopher J.K. ; Lee, Minjoo Larry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Design</topic><topic>Designers</topic><topic>Dislocation density</topic><topic>Electrons</topic><topic>Energy Materials</topic><topic>Engineers</topic><topic>Epitaxial growth</topic><topic>Film growth</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metamorphic Epitaxial Materials</topic><topic>Misfit dislocations</topic><topic>Nanotechnology</topic><topic>Paradigms</topic><topic>Photovoltaic cells</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Strain</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Christopher J.K.</creatorcontrib><creatorcontrib>Lee, Minjoo Larry</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Christopher J.K.</au><au>Lee, Minjoo Larry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamorphic epitaxial materials</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>41</volume><issue>3</issue><spage>193</spage><epage>198</epage><pages>193-198</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2016.7</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7694 |
ispartof | MRS bulletin, 2016-03, Vol.41 (3), p.193-198 |
issn | 0883-7694 1938-1425 |
language | eng |
recordid | cdi_proquest_journals_3130126247 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Applied and Technical Physics Characterization and Evaluation of Materials Crystal defects Crystal dislocations Crystal growth Crystal lattices Crystal structure Design Designers Dislocation density Electrons Energy Materials Engineers Epitaxial growth Film growth Materials Engineering Materials Science Metamorphic Epitaxial Materials Misfit dislocations Nanotechnology Paradigms Photovoltaic cells Quantum computing Quantum dots Semiconductors Single crystals Strain Substrates Thin films Transistors |
title | Metamorphic epitaxial materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamorphic%20epitaxial%20materials&rft.jtitle=MRS%20bulletin&rft.au=Richardson,%20Christopher%20J.K.&rft.date=2016-03-01&rft.volume=41&rft.issue=3&rft.spage=193&rft.epage=198&rft.pages=193-198&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2016.7&rft_dat=%3Cproquest_cross%3E3983488861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772681626&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2016_7&rfr_iscdi=true |