Metamorphic epitaxial materials

Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2016-03, Vol.41 (3), p.193-198
Hauptverfasser: Richardson, Christopher J.K., Lee, Minjoo Larry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 3
container_start_page 193
container_title MRS bulletin
container_volume 41
creator Richardson, Christopher J.K.
Lee, Minjoo Larry
description Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.
doi_str_mv 10.1557/mrs.2016.7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130126247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2016_7</cupid><sourcerecordid>3983488861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</originalsourceid><addsrcrecordid>eNp9kEtLw0AURgdRMFY3_gEL7tTEO-_MUoovqLjQ_TAzvakppokzKei_NyVduJCuvrs4nAuHkHMKBZVS3zYxFQyoKvQByajhZU4Fk4ckg7LkuVZGHJOTlFYAVIKWGbl4wd41bew-6jDFru7dd-0-p43rMQ5HOiVH1TB4ttsJeXu4f5895fPXx-fZ3TwP3Og-X3hqgtAKqHcqIKskE84FEzwKbvxCIzAJASutKiN9AFCcc5SlA1F6PiGXo7WL7dcGU29X7Sauh4eWUw6UKSb0PopqzVRJFVMDdTVSIbYpRaxsF-vGxR9LwW4j2SGS3UayW-X1CKcBWi8x_lH-R9_s1K7xsV4scS_-C5ZAdbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772681626</pqid></control><display><type>article</type><title>Metamorphic epitaxial materials</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Richardson, Christopher J.K. ; Lee, Minjoo Larry</creator><creatorcontrib>Richardson, Christopher J.K. ; Lee, Minjoo Larry</creatorcontrib><description>Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2016.7</identifier><identifier>CODEN: MRSBEA</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Characterization and Evaluation of Materials ; Crystal defects ; Crystal dislocations ; Crystal growth ; Crystal lattices ; Crystal structure ; Design ; Designers ; Dislocation density ; Electrons ; Energy Materials ; Engineers ; Epitaxial growth ; Film growth ; Materials Engineering ; Materials Science ; Metamorphic Epitaxial Materials ; Misfit dislocations ; Nanotechnology ; Paradigms ; Photovoltaic cells ; Quantum computing ; Quantum dots ; Semiconductors ; Single crystals ; Strain ; Substrates ; Thin films ; Transistors</subject><ispartof>MRS bulletin, 2016-03, Vol.41 (3), p.193-198</ispartof><rights>Copyright © Materials Research Society 2016</rights><rights>The Materials Research Society 2016</rights><rights>The Materials Research Society 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</citedby><cites>FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2016.7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769416000075/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,41464,42533,51294,55603</link.rule.ids></links><search><creatorcontrib>Richardson, Christopher J.K.</creatorcontrib><creatorcontrib>Lee, Minjoo Larry</creatorcontrib><title>Metamorphic epitaxial materials</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.</description><subject>Applied and Technical Physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal growth</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Design</subject><subject>Designers</subject><subject>Dislocation density</subject><subject>Electrons</subject><subject>Energy Materials</subject><subject>Engineers</subject><subject>Epitaxial growth</subject><subject>Film growth</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metamorphic Epitaxial Materials</subject><subject>Misfit dislocations</subject><subject>Nanotechnology</subject><subject>Paradigms</subject><subject>Photovoltaic cells</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>Single crystals</subject><subject>Strain</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Transistors</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLw0AURgdRMFY3_gEL7tTEO-_MUoovqLjQ_TAzvakppokzKei_NyVduJCuvrs4nAuHkHMKBZVS3zYxFQyoKvQByajhZU4Fk4ckg7LkuVZGHJOTlFYAVIKWGbl4wd41bew-6jDFru7dd-0-p43rMQ5HOiVH1TB4ttsJeXu4f5895fPXx-fZ3TwP3Og-X3hqgtAKqHcqIKskE84FEzwKbvxCIzAJASutKiN9AFCcc5SlA1F6PiGXo7WL7dcGU29X7Sauh4eWUw6UKSb0PopqzVRJFVMDdTVSIbYpRaxsF-vGxR9LwW4j2SGS3UayW-X1CKcBWi8x_lH-R9_s1K7xsV4scS_-C5ZAdbw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Richardson, Christopher J.K.</creator><creator>Lee, Minjoo Larry</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20160301</creationdate><title>Metamorphic epitaxial materials</title><author>Richardson, Christopher J.K. ; Lee, Minjoo Larry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-db19c47601ba6ce2f524aac9cbe439bd7e0250cef76f95bc006333e58a048b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal growth</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Design</topic><topic>Designers</topic><topic>Dislocation density</topic><topic>Electrons</topic><topic>Energy Materials</topic><topic>Engineers</topic><topic>Epitaxial growth</topic><topic>Film growth</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metamorphic Epitaxial Materials</topic><topic>Misfit dislocations</topic><topic>Nanotechnology</topic><topic>Paradigms</topic><topic>Photovoltaic cells</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>Single crystals</topic><topic>Strain</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Christopher J.K.</creatorcontrib><creatorcontrib>Lee, Minjoo Larry</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Christopher J.K.</au><au>Lee, Minjoo Larry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamorphic epitaxial materials</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>41</volume><issue>3</issue><spage>193</spage><epage>198</epage><pages>193-198</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><coden>MRSBEA</coden><abstract>Mechanisms of dislocation generation and methods of crystal growth are two historically rich areas of scientific study. These two fields converge in the area of metamorphic epitaxial materials, where the goal is to produce high-performance devices that contain high densities of crystal defects in regions of the engineered material away from the active areas. Metamorphic epitaxy is a form of thin-film growth, where the lattice structure of the layer and substrate are mismatched, and its defining characteristic is that any elastic strain in the overlayer has been relaxed by the deliberate introduction of dislocations at the film–substrate interface. Metamorphic growth enables novel combinations of relaxed single-crystal materials to realize novel functionality and performance in numerous technological areas, including lasers, photovoltaics, transistors, and quantum computing. Many of the devices described in this issue are impossible to realize using the traditional approach of avoiding dislocation generation; instead, they rely on metamorphic epitaxy to attain high performance.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2016.7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2016-03, Vol.41 (3), p.193-198
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_3130126247
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Applied and Technical Physics
Characterization and Evaluation of Materials
Crystal defects
Crystal dislocations
Crystal growth
Crystal lattices
Crystal structure
Design
Designers
Dislocation density
Electrons
Energy Materials
Engineers
Epitaxial growth
Film growth
Materials Engineering
Materials Science
Metamorphic Epitaxial Materials
Misfit dislocations
Nanotechnology
Paradigms
Photovoltaic cells
Quantum computing
Quantum dots
Semiconductors
Single crystals
Strain
Substrates
Thin films
Transistors
title Metamorphic epitaxial materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamorphic%20epitaxial%20materials&rft.jtitle=MRS%20bulletin&rft.au=Richardson,%20Christopher%20J.K.&rft.date=2016-03-01&rft.volume=41&rft.issue=3&rft.spage=193&rft.epage=198&rft.pages=193-198&rft.issn=0883-7694&rft.eissn=1938-1425&rft.coden=MRSBEA&rft_id=info:doi/10.1557/mrs.2016.7&rft_dat=%3Cproquest_cross%3E3983488861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1772681626&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2016_7&rfr_iscdi=true