Controllability Analysis of Neutral Stochastic Differential Equation Using $$\psi $$-Hilfer Fractional Derivative with Rosenblatt Process

In this study, we examine the controllability of a neutral stochastic fractional equation of motion that incorporates the ψ-Hilfer fractional derivative and the Rosenblatt process. Utilizing the measure of non-compactness and the Banach contraction mapping, we derive insights into the existence and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2025-02, Vol.24 (1), Article 19
Hauptverfasser: Lavanya, M., Vadivoo, B. Sundara, Nisar, Kottakkaran Sooppy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Qualitative theory of dynamical systems
container_volume 24
creator Lavanya, M.
Vadivoo, B. Sundara
Nisar, Kottakkaran Sooppy
description In this study, we examine the controllability of a neutral stochastic fractional equation of motion that incorporates the ψ-Hilfer fractional derivative and the Rosenblatt process. Utilizing the measure of non-compactness and the Banach contraction mapping, we derive insights into the existence and unique characteristics of the mild solution for the system. We establish the prerequisites for controllability for both linear and nonlinear systems and confirm the controllability of nonlinear cases using the Banach contraction principle. To illustrate our theoretical findings, we provide numerical examples that highlight the practical implications of our analysis. This combined theoretical and numerical approach enhances the understanding of controllability in neutral stochastic fractional equations with the ψ-Hilfer fractional derivative and Rosenblatt process.
doi_str_mv 10.1007/s12346-024-01178-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3130125635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3130125635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-911f166e84fc51269c2a63e28a4497e68c9faa26536b4562d0eac8d5b30d1a1e3</originalsourceid><addsrcrecordid>eNotkM9OAjEQhzdGExF9AU9N5Frtn21390hAxISoUbmZNKW0UlK30HYxPIJvbRFPv8nMl8nMVxTXGN1ihKq7iAktOUSkhAjjqobVSdHDnBNIWUNOc80qBlnJ0XlxEeMaIU4qSnrFz8i3KXjn5MI6m_Zg2Eq3jzYCb8CT7lKQDrwlr1YyJqvA2Bqjg26Tzf37bSeT9S2YR9t-gsHgYxNtDji1LlNgEqQ6zDM61sHuMrzT4NumFXj1UbcLJ1MCL8ErHeNlcWaki_rqP_vFfHL_PprC2fPD42g4gwoznmCDscmP6bo0imHCG0Ukp5rUsiybSvNaNUZKwhnli5JxskRaqnrJFhQtscSa9oub495N8NtOxyTWvgv5xigopggTxinLFDlSKvgYgzZiE-yXDHuBkTgoF0flIisXf8pFRX8BbLl1ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130125635</pqid></control><display><type>article</type><title>Controllability Analysis of Neutral Stochastic Differential Equation Using $$\psi $$-Hilfer Fractional Derivative with Rosenblatt Process</title><source>Springer Nature - Complete Springer Journals</source><creator>Lavanya, M. ; Vadivoo, B. Sundara ; Nisar, Kottakkaran Sooppy</creator><creatorcontrib>Lavanya, M. ; Vadivoo, B. Sundara ; Nisar, Kottakkaran Sooppy</creatorcontrib><description>In this study, we examine the controllability of a neutral stochastic fractional equation of motion that incorporates the ψ-Hilfer fractional derivative and the Rosenblatt process. Utilizing the measure of non-compactness and the Banach contraction mapping, we derive insights into the existence and unique characteristics of the mild solution for the system. We establish the prerequisites for controllability for both linear and nonlinear systems and confirm the controllability of nonlinear cases using the Banach contraction principle. To illustrate our theoretical findings, we provide numerical examples that highlight the practical implications of our analysis. This combined theoretical and numerical approach enhances the understanding of controllability in neutral stochastic fractional equations with the ψ-Hilfer fractional derivative and Rosenblatt process.</description><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/s12346-024-01178-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Controllability ; Derivatives ; Differential equations ; Equations of motion ; Nonlinear control ; Nonlinear systems</subject><ispartof>Qualitative theory of dynamical systems, 2025-02, Vol.24 (1), Article 19</ispartof><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-911f166e84fc51269c2a63e28a4497e68c9faa26536b4562d0eac8d5b30d1a1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lavanya, M.</creatorcontrib><creatorcontrib>Vadivoo, B. Sundara</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><title>Controllability Analysis of Neutral Stochastic Differential Equation Using $$\psi $$-Hilfer Fractional Derivative with Rosenblatt Process</title><title>Qualitative theory of dynamical systems</title><description>In this study, we examine the controllability of a neutral stochastic fractional equation of motion that incorporates the ψ-Hilfer fractional derivative and the Rosenblatt process. Utilizing the measure of non-compactness and the Banach contraction mapping, we derive insights into the existence and unique characteristics of the mild solution for the system. We establish the prerequisites for controllability for both linear and nonlinear systems and confirm the controllability of nonlinear cases using the Banach contraction principle. To illustrate our theoretical findings, we provide numerical examples that highlight the practical implications of our analysis. This combined theoretical and numerical approach enhances the understanding of controllability in neutral stochastic fractional equations with the ψ-Hilfer fractional derivative and Rosenblatt process.</description><subject>Controllability</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Equations of motion</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkM9OAjEQhzdGExF9AU9N5Frtn21390hAxISoUbmZNKW0UlK30HYxPIJvbRFPv8nMl8nMVxTXGN1ihKq7iAktOUSkhAjjqobVSdHDnBNIWUNOc80qBlnJ0XlxEeMaIU4qSnrFz8i3KXjn5MI6m_Zg2Eq3jzYCb8CT7lKQDrwlr1YyJqvA2Bqjg26Tzf37bSeT9S2YR9t-gsHgYxNtDji1LlNgEqQ6zDM61sHuMrzT4NumFXj1UbcLJ1MCL8ErHeNlcWaki_rqP_vFfHL_PprC2fPD42g4gwoznmCDscmP6bo0imHCG0Ukp5rUsiybSvNaNUZKwhnli5JxskRaqnrJFhQtscSa9oub495N8NtOxyTWvgv5xigopggTxinLFDlSKvgYgzZiE-yXDHuBkTgoF0flIisXf8pFRX8BbLl1ug</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Lavanya, M.</creator><creator>Vadivoo, B. Sundara</creator><creator>Nisar, Kottakkaran Sooppy</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250201</creationdate><title>Controllability Analysis of Neutral Stochastic Differential Equation Using $$\psi $$-Hilfer Fractional Derivative with Rosenblatt Process</title><author>Lavanya, M. ; Vadivoo, B. Sundara ; Nisar, Kottakkaran Sooppy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-911f166e84fc51269c2a63e28a4497e68c9faa26536b4562d0eac8d5b30d1a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Controllability</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Equations of motion</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavanya, M.</creatorcontrib><creatorcontrib>Vadivoo, B. Sundara</creatorcontrib><creatorcontrib>Nisar, Kottakkaran Sooppy</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavanya, M.</au><au>Vadivoo, B. Sundara</au><au>Nisar, Kottakkaran Sooppy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllability Analysis of Neutral Stochastic Differential Equation Using $$\psi $$-Hilfer Fractional Derivative with Rosenblatt Process</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><date>2025-02-01</date><risdate>2025</risdate><volume>24</volume><issue>1</issue><artnum>19</artnum><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>In this study, we examine the controllability of a neutral stochastic fractional equation of motion that incorporates the ψ-Hilfer fractional derivative and the Rosenblatt process. Utilizing the measure of non-compactness and the Banach contraction mapping, we derive insights into the existence and unique characteristics of the mild solution for the system. We establish the prerequisites for controllability for both linear and nonlinear systems and confirm the controllability of nonlinear cases using the Banach contraction principle. To illustrate our theoretical findings, we provide numerical examples that highlight the practical implications of our analysis. This combined theoretical and numerical approach enhances the understanding of controllability in neutral stochastic fractional equations with the ψ-Hilfer fractional derivative and Rosenblatt process.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s12346-024-01178-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1575-5460
ispartof Qualitative theory of dynamical systems, 2025-02, Vol.24 (1), Article 19
issn 1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_3130125635
source Springer Nature - Complete Springer Journals
subjects Controllability
Derivatives
Differential equations
Equations of motion
Nonlinear control
Nonlinear systems
title Controllability Analysis of Neutral Stochastic Differential Equation Using $$\psi $$-Hilfer Fractional Derivative with Rosenblatt Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllability%20Analysis%20of%20Neutral%20Stochastic%20Differential%20Equation%20Using%20$$%5Cpsi%20$$-Hilfer%20Fractional%20Derivative%20with%20Rosenblatt%20Process&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Lavanya,%20M.&rft.date=2025-02-01&rft.volume=24&rft.issue=1&rft.artnum=19&rft.issn=1575-5460&rft.eissn=1662-3592&rft_id=info:doi/10.1007/s12346-024-01178-7&rft_dat=%3Cproquest_cross%3E3130125635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130125635&rft_id=info:pmid/&rfr_iscdi=true