On the dynamics and unstable region of a class of parametrically excited systems similar to a beam with an axially reciprocating mid-support

By means of Euler–Bernoulli beam theory and the Lagrange equation of the first kind, the dynamic equation of a beam with an axially harmonic reciprocating moving mid-support (beam-AHRMS) is established. Using two modal coordinates, the equation of the beam-AHRMS is reduced to a special form of Hill’...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2025, Vol.113 (1), p.87-108
Hauptverfasser: Ding, Weigao, Xie, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1
container_start_page 87
container_title Nonlinear dynamics
container_volume 113
creator Ding, Weigao
Xie, Jin
description By means of Euler–Bernoulli beam theory and the Lagrange equation of the first kind, the dynamic equation of a beam with an axially harmonic reciprocating moving mid-support (beam-AHRMS) is established. Using two modal coordinates, the equation of the beam-AHRMS is reduced to a special form of Hill’s equation, the particularity of which is that its excitation, i.e., time-dependent variable coefficients in front of the state variable of the equation, is a nonlinear function of the excitation in Mathieu’s equation. Using the perturbation method, the approximate solution for the transition curves between the stable and unstable regions of the system is obtained. The most different behaviour of the special form of Hill’s equation is that there exists a knot in the principal unstable region, where the bandwidth of the unstable region becomes zero for any frequency, and the principal parameter resonance is suppressed. A theorem for the occurrence and location of knots in the principal unstable region is proposed and proven. All the results of the analysis and the theorem are verified via a numerical method.
doi_str_mv 10.1007/s11071-024-10248-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129878709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129878709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-da6ba619e94bf7f50a82c2e43177975285a48e3b1e6beedb5df40e60929c0b6b3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUWIIRPHP5CVIOtOSuqHWstg8gKDNwl4J0rq6rFMv6LSEI-_wR9t2RPILhuVoO65EkeI9wo-KgDziZUCoyrQTaXK0VcPr8ROtaaudGdvXosd2LICCzdvxFvmOwCoNfQ78Xi9yHxLcjguOMfAEpdBHhbO6CeSifZxXeQ6SpRhQubn64YJZ8opBpymo6T7EDMNko-caWbJcY4TJpnXAnnCWf6J-bb0SryPL0SiELe0Bsxx2cs5DhUftm1N-Z04G3Fiuvg7z8Wvr19-Xn6vrq6__bj8fFUFDZCrATuPnbJkGz-asQXsddDU1MoYa1rdt9j0VHtFnScafDuMDVBXFNgAvvP1ufhw6i2_-H0gzu5uPaSlPOlqpW1vegO2pPQpFdLKnGh0W4ozpqNT4J6tu5N1V4S7F-vuoUD1CeISXvaU_lX_h3oChhSIxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129878709</pqid></control><display><type>article</type><title>On the dynamics and unstable region of a class of parametrically excited systems similar to a beam with an axially reciprocating mid-support</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ding, Weigao ; Xie, Jin</creator><creatorcontrib>Ding, Weigao ; Xie, Jin</creatorcontrib><description>By means of Euler–Bernoulli beam theory and the Lagrange equation of the first kind, the dynamic equation of a beam with an axially harmonic reciprocating moving mid-support (beam-AHRMS) is established. Using two modal coordinates, the equation of the beam-AHRMS is reduced to a special form of Hill’s equation, the particularity of which is that its excitation, i.e., time-dependent variable coefficients in front of the state variable of the equation, is a nonlinear function of the excitation in Mathieu’s equation. Using the perturbation method, the approximate solution for the transition curves between the stable and unstable regions of the system is obtained. The most different behaviour of the special form of Hill’s equation is that there exists a knot in the principal unstable region, where the bandwidth of the unstable region becomes zero for any frequency, and the principal parameter resonance is suppressed. A theorem for the occurrence and location of knots in the principal unstable region is proposed and proven. All the results of the analysis and the theorem are verified via a numerical method.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-10248-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Nonlinear Dynamics and Chaos Theory ; Beam theory (structures) ; Classical Mechanics ; Control ; Dependent variables ; Dynamical Systems ; Engineering ; Euler-Bernoulli beams ; Euler-Lagrange equation ; Excitation ; Knots ; Methods ; Numerical analysis ; Numerical methods ; Original Paper ; Perturbation methods ; Physics ; Physics and Astronomy ; Statistical Physics and Dynamical Systems ; Theorems ; Vibration</subject><ispartof>Nonlinear dynamics, 2025, Vol.113 (1), p.87-108</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-da6ba619e94bf7f50a82c2e43177975285a48e3b1e6beedb5df40e60929c0b6b3</cites><orcidid>0000-0003-3901-7208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-10248-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-10248-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ding, Weigao</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><title>On the dynamics and unstable region of a class of parametrically excited systems similar to a beam with an axially reciprocating mid-support</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>By means of Euler–Bernoulli beam theory and the Lagrange equation of the first kind, the dynamic equation of a beam with an axially harmonic reciprocating moving mid-support (beam-AHRMS) is established. Using two modal coordinates, the equation of the beam-AHRMS is reduced to a special form of Hill’s equation, the particularity of which is that its excitation, i.e., time-dependent variable coefficients in front of the state variable of the equation, is a nonlinear function of the excitation in Mathieu’s equation. Using the perturbation method, the approximate solution for the transition curves between the stable and unstable regions of the system is obtained. The most different behaviour of the special form of Hill’s equation is that there exists a knot in the principal unstable region, where the bandwidth of the unstable region becomes zero for any frequency, and the principal parameter resonance is suppressed. A theorem for the occurrence and location of knots in the principal unstable region is proposed and proven. All the results of the analysis and the theorem are verified via a numerical method.</description><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Beam theory (structures)</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dependent variables</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Euler-Bernoulli beams</subject><subject>Euler-Lagrange equation</subject><subject>Excitation</subject><subject>Knots</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Original Paper</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theorems</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqHDEQRUWIIRPHP5CVIOtOSuqHWstg8gKDNwl4J0rq6rFMv6LSEI-_wR9t2RPILhuVoO65EkeI9wo-KgDziZUCoyrQTaXK0VcPr8ROtaaudGdvXosd2LICCzdvxFvmOwCoNfQ78Xi9yHxLcjguOMfAEpdBHhbO6CeSifZxXeQ6SpRhQubn64YJZ8opBpymo6T7EDMNko-caWbJcY4TJpnXAnnCWf6J-bb0SryPL0SiELe0Bsxx2cs5DhUftm1N-Z04G3Fiuvg7z8Wvr19-Xn6vrq6__bj8fFUFDZCrATuPnbJkGz-asQXsddDU1MoYa1rdt9j0VHtFnScafDuMDVBXFNgAvvP1ufhw6i2_-H0gzu5uPaSlPOlqpW1vegO2pPQpFdLKnGh0W4ozpqNT4J6tu5N1V4S7F-vuoUD1CeISXvaU_lX_h3oChhSIxw</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Ding, Weigao</creator><creator>Xie, Jin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3901-7208</orcidid></search><sort><creationdate>2025</creationdate><title>On the dynamics and unstable region of a class of parametrically excited systems similar to a beam with an axially reciprocating mid-support</title><author>Ding, Weigao ; Xie, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-da6ba619e94bf7f50a82c2e43177975285a48e3b1e6beedb5df40e60929c0b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Beam theory (structures)</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dependent variables</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Euler-Bernoulli beams</topic><topic>Euler-Lagrange equation</topic><topic>Excitation</topic><topic>Knots</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Original Paper</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theorems</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Weigao</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Weigao</au><au>Xie, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the dynamics and unstable region of a class of parametrically excited systems similar to a beam with an axially reciprocating mid-support</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2025</date><risdate>2025</risdate><volume>113</volume><issue>1</issue><spage>87</spage><epage>108</epage><pages>87-108</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>By means of Euler–Bernoulli beam theory and the Lagrange equation of the first kind, the dynamic equation of a beam with an axially harmonic reciprocating moving mid-support (beam-AHRMS) is established. Using two modal coordinates, the equation of the beam-AHRMS is reduced to a special form of Hill’s equation, the particularity of which is that its excitation, i.e., time-dependent variable coefficients in front of the state variable of the equation, is a nonlinear function of the excitation in Mathieu’s equation. Using the perturbation method, the approximate solution for the transition curves between the stable and unstable regions of the system is obtained. The most different behaviour of the special form of Hill’s equation is that there exists a knot in the principal unstable region, where the bandwidth of the unstable region becomes zero for any frequency, and the principal parameter resonance is suppressed. A theorem for the occurrence and location of knots in the principal unstable region is proposed and proven. All the results of the analysis and the theorem are verified via a numerical method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-10248-z</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3901-7208</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2025, Vol.113 (1), p.87-108
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3129878709
source SpringerLink Journals - AutoHoldings
subjects Applications of Nonlinear Dynamics and Chaos Theory
Beam theory (structures)
Classical Mechanics
Control
Dependent variables
Dynamical Systems
Engineering
Euler-Bernoulli beams
Euler-Lagrange equation
Excitation
Knots
Methods
Numerical analysis
Numerical methods
Original Paper
Perturbation methods
Physics
Physics and Astronomy
Statistical Physics and Dynamical Systems
Theorems
Vibration
title On the dynamics and unstable region of a class of parametrically excited systems similar to a beam with an axially reciprocating mid-support
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20dynamics%20and%20unstable%20region%20of%20a%20class%20of%20parametrically%20excited%20systems%20similar%20to%20a%20beam%20with%20an%20axially%20reciprocating%20mid-support&rft.jtitle=Nonlinear%20dynamics&rft.au=Ding,%20Weigao&rft.date=2025&rft.volume=113&rft.issue=1&rft.spage=87&rft.epage=108&rft.pages=87-108&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-10248-z&rft_dat=%3Cproquest_cross%3E3129878709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129878709&rft_id=info:pmid/&rfr_iscdi=true