Ultimate Bearing Capacity of Bored Piles Determined Using Finite Element Analysis and Cubic Regression
This study aims to establish a method for evaluating the ultimate bearing capacity of bored piles in sandy soil by integrating finite element analysis (FEM) with nonlinear curve analysis. Using FEM, the research simulated vertical displacements of piles under varying load levels and compared these r...
Gespeichert in:
Veröffentlicht in: | Transportation infrastructure geotechnology 2025, Vol.12 (1), p.26, Article 26 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | Transportation infrastructure geotechnology |
container_volume | 12 |
creator | Dang, Truong Xuan Nguyen, Tuan Anh Nguyen, Phuong Tuan Vo, Luan Nhat Van Vu Tran, Hoa |
description | This study aims to establish a method for evaluating the ultimate bearing capacity of bored piles in sandy soil by integrating finite element analysis (FEM) with nonlinear curve analysis. Using FEM, the research simulated vertical displacements of piles under varying load levels and compared these results with those obtained from static compression tests (SCT). The bored piles, constructed from grade B35 concrete with a diameter of 1 m and a depth of 45.3 m, were analyzed in a geological context characterized by an 80-m-thick sandy soil layer with a groundwater table at − 1.5 m. The findings revealed a high correlation coefficient of 0.97 between FEM and SCT results, indicating significant alignment. The cubic regression model applied to the FEM data achieved an
R
2
value of 1, confirming the model’s perfect fit and FEM’s ability to accurately simulate nonlinear variations in vertical displacement. This study concludes that FEM offers a reliable and cost-effective alternative to traditional SCT, providing accurate and sensitive predictions of pile behavior under load, which is critical for foundation design in modern construction projects. Furthermore, the use of cubic regression allowed for the precise identification of critical inflection points, facilitating an accurate determination of the ultimate bearing capacity. This integration of FEM and regression analysis not only enhances the evaluation process but also significantly reduces costs and time associated with pile testing. |
doi_str_mv | 10.1007/s40515-024-00491-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129873931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129873931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-74417cf2d1264a04171a3db20c70d79e0e6755edbc9da3463336baf7c12126533</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsNT-AU8LnqOzH8k2xza2KhQUsedls5mULWkSd9ND_71bI3rzNB-8zzA8hNwyuGcA6iFISFmaAJcJgMxZoi7IhLM8SxRncPnbA78msxD2AMCZBJbOJ6TeNoM7mAHpEo137Y4WpjfWDSfa1XTZeazom2sw0Ecc0B9cGxfbcA6uXesit2rwgO1AF61pTsEFatqKFsfSWfqOO48huK69IVe1aQLOfuqUbNerj-I52bw-vRSLTWI5wJAoKZmyNa8Yz6SBODAjqpKDVVCpHAEzlaZYlTavjJCZECIrTa0s45FIhZiSu_Fu77vPI4ZB77ujj58FLRjP50rkgsUUH1PWdyF4rHXvowR_0gz0WakeleqoVH8r1SpCYoRCf_aE_u_0P9QXW_h4EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129873931</pqid></control><display><type>article</type><title>Ultimate Bearing Capacity of Bored Piles Determined Using Finite Element Analysis and Cubic Regression</title><source>Springer Nature - Complete Springer Journals</source><creator>Dang, Truong Xuan ; Nguyen, Tuan Anh ; Nguyen, Phuong Tuan ; Vo, Luan Nhat ; Van Vu Tran, Hoa</creator><creatorcontrib>Dang, Truong Xuan ; Nguyen, Tuan Anh ; Nguyen, Phuong Tuan ; Vo, Luan Nhat ; Van Vu Tran, Hoa</creatorcontrib><description>This study aims to establish a method for evaluating the ultimate bearing capacity of bored piles in sandy soil by integrating finite element analysis (FEM) with nonlinear curve analysis. Using FEM, the research simulated vertical displacements of piles under varying load levels and compared these results with those obtained from static compression tests (SCT). The bored piles, constructed from grade B35 concrete with a diameter of 1 m and a depth of 45.3 m, were analyzed in a geological context characterized by an 80-m-thick sandy soil layer with a groundwater table at − 1.5 m. The findings revealed a high correlation coefficient of 0.97 between FEM and SCT results, indicating significant alignment. The cubic regression model applied to the FEM data achieved an
R
2
value of 1, confirming the model’s perfect fit and FEM’s ability to accurately simulate nonlinear variations in vertical displacement. This study concludes that FEM offers a reliable and cost-effective alternative to traditional SCT, providing accurate and sensitive predictions of pile behavior under load, which is critical for foundation design in modern construction projects. Furthermore, the use of cubic regression allowed for the precise identification of critical inflection points, facilitating an accurate determination of the ultimate bearing capacity. This integration of FEM and regression analysis not only enhances the evaluation process but also significantly reduces costs and time associated with pile testing.</description><identifier>ISSN: 2196-7202</identifier><identifier>EISSN: 2196-7210</identifier><identifier>DOI: 10.1007/s40515-024-00491-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bearing capacity ; Bored piles ; Building Materials ; Compression ; Compression tests ; Construction industry ; Correlation coefficient ; Correlation coefficients ; Engineering ; Finite element analysis ; Finite element method ; Foundations ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Groundwater ; Groundwater levels ; Groundwater table ; Hydraulics ; Inflection points ; Pile bearing capacities ; Pile tests ; Piles ; Project engineering ; Regression analysis ; Regression models ; Sandy soils ; Soil analysis ; Soil bearing capacity ; Soil layers ; Technical Paper ; Vertical loads ; Water table</subject><ispartof>Transportation infrastructure geotechnology, 2025, Vol.12 (1), p.26, Article 26</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-74417cf2d1264a04171a3db20c70d79e0e6755edbc9da3463336baf7c12126533</cites><orcidid>0000-0002-1259-6986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40515-024-00491-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40515-024-00491-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dang, Truong Xuan</creatorcontrib><creatorcontrib>Nguyen, Tuan Anh</creatorcontrib><creatorcontrib>Nguyen, Phuong Tuan</creatorcontrib><creatorcontrib>Vo, Luan Nhat</creatorcontrib><creatorcontrib>Van Vu Tran, Hoa</creatorcontrib><title>Ultimate Bearing Capacity of Bored Piles Determined Using Finite Element Analysis and Cubic Regression</title><title>Transportation infrastructure geotechnology</title><addtitle>Transp. Infrastruct. Geotech</addtitle><description>This study aims to establish a method for evaluating the ultimate bearing capacity of bored piles in sandy soil by integrating finite element analysis (FEM) with nonlinear curve analysis. Using FEM, the research simulated vertical displacements of piles under varying load levels and compared these results with those obtained from static compression tests (SCT). The bored piles, constructed from grade B35 concrete with a diameter of 1 m and a depth of 45.3 m, were analyzed in a geological context characterized by an 80-m-thick sandy soil layer with a groundwater table at − 1.5 m. The findings revealed a high correlation coefficient of 0.97 between FEM and SCT results, indicating significant alignment. The cubic regression model applied to the FEM data achieved an
R
2
value of 1, confirming the model’s perfect fit and FEM’s ability to accurately simulate nonlinear variations in vertical displacement. This study concludes that FEM offers a reliable and cost-effective alternative to traditional SCT, providing accurate and sensitive predictions of pile behavior under load, which is critical for foundation design in modern construction projects. Furthermore, the use of cubic regression allowed for the precise identification of critical inflection points, facilitating an accurate determination of the ultimate bearing capacity. This integration of FEM and regression analysis not only enhances the evaluation process but also significantly reduces costs and time associated with pile testing.</description><subject>Bearing capacity</subject><subject>Bored piles</subject><subject>Building Materials</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Construction industry</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Engineering</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Groundwater</subject><subject>Groundwater levels</subject><subject>Groundwater table</subject><subject>Hydraulics</subject><subject>Inflection points</subject><subject>Pile bearing capacities</subject><subject>Pile tests</subject><subject>Piles</subject><subject>Project engineering</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sandy soils</subject><subject>Soil analysis</subject><subject>Soil bearing capacity</subject><subject>Soil layers</subject><subject>Technical Paper</subject><subject>Vertical loads</subject><subject>Water table</subject><issn>2196-7202</issn><issn>2196-7210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsNT-AU8LnqOzH8k2xza2KhQUsedls5mULWkSd9ND_71bI3rzNB-8zzA8hNwyuGcA6iFISFmaAJcJgMxZoi7IhLM8SxRncPnbA78msxD2AMCZBJbOJ6TeNoM7mAHpEo137Y4WpjfWDSfa1XTZeazom2sw0Ecc0B9cGxfbcA6uXesit2rwgO1AF61pTsEFatqKFsfSWfqOO48huK69IVe1aQLOfuqUbNerj-I52bw-vRSLTWI5wJAoKZmyNa8Yz6SBODAjqpKDVVCpHAEzlaZYlTavjJCZECIrTa0s45FIhZiSu_Fu77vPI4ZB77ujj58FLRjP50rkgsUUH1PWdyF4rHXvowR_0gz0WakeleqoVH8r1SpCYoRCf_aE_u_0P9QXW_h4EQ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Dang, Truong Xuan</creator><creator>Nguyen, Tuan Anh</creator><creator>Nguyen, Phuong Tuan</creator><creator>Vo, Luan Nhat</creator><creator>Van Vu Tran, Hoa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1259-6986</orcidid></search><sort><creationdate>2025</creationdate><title>Ultimate Bearing Capacity of Bored Piles Determined Using Finite Element Analysis and Cubic Regression</title><author>Dang, Truong Xuan ; Nguyen, Tuan Anh ; Nguyen, Phuong Tuan ; Vo, Luan Nhat ; Van Vu Tran, Hoa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-74417cf2d1264a04171a3db20c70d79e0e6755edbc9da3463336baf7c12126533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Bearing capacity</topic><topic>Bored piles</topic><topic>Building Materials</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Construction industry</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Engineering</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Groundwater</topic><topic>Groundwater levels</topic><topic>Groundwater table</topic><topic>Hydraulics</topic><topic>Inflection points</topic><topic>Pile bearing capacities</topic><topic>Pile tests</topic><topic>Piles</topic><topic>Project engineering</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sandy soils</topic><topic>Soil analysis</topic><topic>Soil bearing capacity</topic><topic>Soil layers</topic><topic>Technical Paper</topic><topic>Vertical loads</topic><topic>Water table</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Truong Xuan</creatorcontrib><creatorcontrib>Nguyen, Tuan Anh</creatorcontrib><creatorcontrib>Nguyen, Phuong Tuan</creatorcontrib><creatorcontrib>Vo, Luan Nhat</creatorcontrib><creatorcontrib>Van Vu Tran, Hoa</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Transportation infrastructure geotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Truong Xuan</au><au>Nguyen, Tuan Anh</au><au>Nguyen, Phuong Tuan</au><au>Vo, Luan Nhat</au><au>Van Vu Tran, Hoa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultimate Bearing Capacity of Bored Piles Determined Using Finite Element Analysis and Cubic Regression</atitle><jtitle>Transportation infrastructure geotechnology</jtitle><stitle>Transp. Infrastruct. Geotech</stitle><date>2025</date><risdate>2025</risdate><volume>12</volume><issue>1</issue><spage>26</spage><pages>26-</pages><artnum>26</artnum><issn>2196-7202</issn><eissn>2196-7210</eissn><abstract>This study aims to establish a method for evaluating the ultimate bearing capacity of bored piles in sandy soil by integrating finite element analysis (FEM) with nonlinear curve analysis. Using FEM, the research simulated vertical displacements of piles under varying load levels and compared these results with those obtained from static compression tests (SCT). The bored piles, constructed from grade B35 concrete with a diameter of 1 m and a depth of 45.3 m, were analyzed in a geological context characterized by an 80-m-thick sandy soil layer with a groundwater table at − 1.5 m. The findings revealed a high correlation coefficient of 0.97 between FEM and SCT results, indicating significant alignment. The cubic regression model applied to the FEM data achieved an
R
2
value of 1, confirming the model’s perfect fit and FEM’s ability to accurately simulate nonlinear variations in vertical displacement. This study concludes that FEM offers a reliable and cost-effective alternative to traditional SCT, providing accurate and sensitive predictions of pile behavior under load, which is critical for foundation design in modern construction projects. Furthermore, the use of cubic regression allowed for the precise identification of critical inflection points, facilitating an accurate determination of the ultimate bearing capacity. This integration of FEM and regression analysis not only enhances the evaluation process but also significantly reduces costs and time associated with pile testing.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40515-024-00491-7</doi><orcidid>https://orcid.org/0000-0002-1259-6986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7202 |
ispartof | Transportation infrastructure geotechnology, 2025, Vol.12 (1), p.26, Article 26 |
issn | 2196-7202 2196-7210 |
language | eng |
recordid | cdi_proquest_journals_3129873931 |
source | Springer Nature - Complete Springer Journals |
subjects | Bearing capacity Bored piles Building Materials Compression Compression tests Construction industry Correlation coefficient Correlation coefficients Engineering Finite element analysis Finite element method Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Groundwater Groundwater levels Groundwater table Hydraulics Inflection points Pile bearing capacities Pile tests Piles Project engineering Regression analysis Regression models Sandy soils Soil analysis Soil bearing capacity Soil layers Technical Paper Vertical loads Water table |
title | Ultimate Bearing Capacity of Bored Piles Determined Using Finite Element Analysis and Cubic Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultimate%20Bearing%20Capacity%20of%20Bored%20Piles%20Determined%20Using%20Finite%20Element%20Analysis%20and%20Cubic%20Regression&rft.jtitle=Transportation%20infrastructure%20geotechnology&rft.au=Dang,%20Truong%20Xuan&rft.date=2025&rft.volume=12&rft.issue=1&rft.spage=26&rft.pages=26-&rft.artnum=26&rft.issn=2196-7202&rft.eissn=2196-7210&rft_id=info:doi/10.1007/s40515-024-00491-7&rft_dat=%3Cproquest_cross%3E3129873931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129873931&rft_id=info:pmid/&rfr_iscdi=true |