The distribution of power-related random variables (and their use in clinical trials)

In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2024-12, Vol.65 (9), p.5555-5574
Hauptverfasser: Mariani, Francesco, De Santis, Fulvio, Gubbiotti, Stefania
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5574
container_issue 9
container_start_page 5555
container_title Statistical papers (Berlin, Germany)
container_volume 65
creator Mariani, Francesco
De Santis, Fulvio
Gubbiotti, Stefania
description In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.
doi_str_mv 10.1007/s00362-024-01599-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129864956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129864956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c790c6f1ce8e8e1f5c33b40b28ce0b011fe75be65815b86bf4bcc74f436c01023</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgRhfRk8tkkqUUb1Bw067DJE1synSmJjOKb290BHdyFj8c_gt8CF1QuKEA9W0G4JIRYIIArbQm9ADNqKSc6FqrQzQDzRmpgMljdJLzFoAqpWCGVsuNx-uYhxTtOMS-w33A-_7DJ5J82wx-jVPTrfsdfm9SbGzrM74qDzxsfEx4zB7HDrs2dtE1LS41TZuvz9BRKOrPf_UUrR7ul_Mnsnh5fJ7fLYhjQgzE1RqcDNR5VY6GynFuBVimnAcLlAZfV9bLStHKKmmDsM7VIgguHVBg_BRdTr371L-NPg9m24-pK5OGU6aVFLqSxcUml0t9zskHs09x16RPQ8F84zMTPlPwmR98hpYQn0K5mLtXn_6q_0l9Ab1TctA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129864956</pqid></control><display><type>article</type><title>The distribution of power-related random variables (and their use in clinical trials)</title><source>SpringerNature Journals</source><creator>Mariani, Francesco ; De Santis, Fulvio ; Gubbiotti, Stefania</creator><creatorcontrib>Mariani, Francesco ; De Santis, Fulvio ; Gubbiotti, Stefania</creatorcontrib><description>In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-024-01599-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Clinical trials ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Electric power distribution ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Null hypothesis ; Operations Research/Decision Theory ; Probability density functions ; Probability Theory and Stochastic Processes ; Random variables ; Regular Article ; Statistical analysis ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2024-12, Vol.65 (9), p.5555-5574</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c790c6f1ce8e8e1f5c33b40b28ce0b011fe75be65815b86bf4bcc74f436c01023</cites><orcidid>0000-0002-0239-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-024-01599-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-024-01599-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mariani, Francesco</creatorcontrib><creatorcontrib>De Santis, Fulvio</creatorcontrib><creatorcontrib>Gubbiotti, Stefania</creatorcontrib><title>The distribution of power-related random variables (and their use in clinical trials)</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.</description><subject>Clinical trials</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Electric power distribution</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Null hypothesis</subject><subject>Operations Research/Decision Theory</subject><subject>Probability density functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Regular Article</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgRhfRk8tkkqUUb1Bw067DJE1synSmJjOKb290BHdyFj8c_gt8CF1QuKEA9W0G4JIRYIIArbQm9ADNqKSc6FqrQzQDzRmpgMljdJLzFoAqpWCGVsuNx-uYhxTtOMS-w33A-_7DJ5J82wx-jVPTrfsdfm9SbGzrM74qDzxsfEx4zB7HDrs2dtE1LS41TZuvz9BRKOrPf_UUrR7ul_Mnsnh5fJ7fLYhjQgzE1RqcDNR5VY6GynFuBVimnAcLlAZfV9bLStHKKmmDsM7VIgguHVBg_BRdTr371L-NPg9m24-pK5OGU6aVFLqSxcUml0t9zskHs09x16RPQ8F84zMTPlPwmR98hpYQn0K5mLtXn_6q_0l9Ab1TctA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mariani, Francesco</creator><creator>De Santis, Fulvio</creator><creator>Gubbiotti, Stefania</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0239-1741</orcidid></search><sort><creationdate>20241201</creationdate><title>The distribution of power-related random variables (and their use in clinical trials)</title><author>Mariani, Francesco ; De Santis, Fulvio ; Gubbiotti, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c790c6f1ce8e8e1f5c33b40b28ce0b011fe75be65815b86bf4bcc74f436c01023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clinical trials</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Electric power distribution</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Null hypothesis</topic><topic>Operations Research/Decision Theory</topic><topic>Probability density functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Regular Article</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariani, Francesco</creatorcontrib><creatorcontrib>De Santis, Fulvio</creatorcontrib><creatorcontrib>Gubbiotti, Stefania</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariani, Francesco</au><au>De Santis, Fulvio</au><au>Gubbiotti, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distribution of power-related random variables (and their use in clinical trials)</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>65</volume><issue>9</issue><spage>5555</spage><epage>5574</epage><pages>5555-5574</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-024-01599-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0239-1741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2024-12, Vol.65 (9), p.5555-5574
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_3129864956
source SpringerNature Journals
subjects Clinical trials
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Electric power distribution
Finance
Insurance
Management
Mathematics and Statistics
Null hypothesis
Operations Research/Decision Theory
Probability density functions
Probability Theory and Stochastic Processes
Random variables
Regular Article
Statistical analysis
Statistics
Statistics for Business
title The distribution of power-related random variables (and their use in clinical trials)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distribution%20of%20power-related%20random%20variables%20(and%20their%20use%20in%20clinical%20trials)&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Mariani,%20Francesco&rft.date=2024-12-01&rft.volume=65&rft.issue=9&rft.spage=5555&rft.epage=5574&rft.pages=5555-5574&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-024-01599-1&rft_dat=%3Cproquest_cross%3E3129864956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129864956&rft_id=info:pmid/&rfr_iscdi=true