The distribution of power-related random variables (and their use in clinical trials)
In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually d...
Gespeichert in:
Veröffentlicht in: | Statistical papers (Berlin, Germany) Germany), 2024-12, Vol.65 (9), p.5555-5574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5574 |
---|---|
container_issue | 9 |
container_start_page | 5555 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 65 |
creator | Mariani, Francesco De Santis, Fulvio Gubbiotti, Stefania |
description | In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed. |
doi_str_mv | 10.1007/s00362-024-01599-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129864956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129864956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-c790c6f1ce8e8e1f5c33b40b28ce0b011fe75be65815b86bf4bcc74f436c01023</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgRhfRk8tkkqUUb1Bw067DJE1synSmJjOKb290BHdyFj8c_gt8CF1QuKEA9W0G4JIRYIIArbQm9ADNqKSc6FqrQzQDzRmpgMljdJLzFoAqpWCGVsuNx-uYhxTtOMS-w33A-_7DJ5J82wx-jVPTrfsdfm9SbGzrM74qDzxsfEx4zB7HDrs2dtE1LS41TZuvz9BRKOrPf_UUrR7ul_Mnsnh5fJ7fLYhjQgzE1RqcDNR5VY6GynFuBVimnAcLlAZfV9bLStHKKmmDsM7VIgguHVBg_BRdTr371L-NPg9m24-pK5OGU6aVFLqSxcUml0t9zskHs09x16RPQ8F84zMTPlPwmR98hpYQn0K5mLtXn_6q_0l9Ab1TctA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129864956</pqid></control><display><type>article</type><title>The distribution of power-related random variables (and their use in clinical trials)</title><source>SpringerNature Journals</source><creator>Mariani, Francesco ; De Santis, Fulvio ; Gubbiotti, Stefania</creator><creatorcontrib>Mariani, Francesco ; De Santis, Fulvio ; Gubbiotti, Stefania</creatorcontrib><description>In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-024-01599-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Clinical trials ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Electric power distribution ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Null hypothesis ; Operations Research/Decision Theory ; Probability density functions ; Probability Theory and Stochastic Processes ; Random variables ; Regular Article ; Statistical analysis ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2024-12, Vol.65 (9), p.5555-5574</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-c790c6f1ce8e8e1f5c33b40b28ce0b011fe75be65815b86bf4bcc74f436c01023</cites><orcidid>0000-0002-0239-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-024-01599-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-024-01599-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mariani, Francesco</creatorcontrib><creatorcontrib>De Santis, Fulvio</creatorcontrib><creatorcontrib>Gubbiotti, Stefania</creatorcontrib><title>The distribution of power-related random variables (and their use in clinical trials)</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.</description><subject>Clinical trials</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Electric power distribution</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Null hypothesis</subject><subject>Operations Research/Decision Theory</subject><subject>Probability density functions</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Regular Article</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgRhfRk8tkkqUUb1Bw067DJE1synSmJjOKb290BHdyFj8c_gt8CF1QuKEA9W0G4JIRYIIArbQm9ADNqKSc6FqrQzQDzRmpgMljdJLzFoAqpWCGVsuNx-uYhxTtOMS-w33A-_7DJ5J82wx-jVPTrfsdfm9SbGzrM74qDzxsfEx4zB7HDrs2dtE1LS41TZuvz9BRKOrPf_UUrR7ul_Mnsnh5fJ7fLYhjQgzE1RqcDNR5VY6GynFuBVimnAcLlAZfV9bLStHKKmmDsM7VIgguHVBg_BRdTr371L-NPg9m24-pK5OGU6aVFLqSxcUml0t9zskHs09x16RPQ8F84zMTPlPwmR98hpYQn0K5mLtXn_6q_0l9Ab1TctA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mariani, Francesco</creator><creator>De Santis, Fulvio</creator><creator>Gubbiotti, Stefania</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0239-1741</orcidid></search><sort><creationdate>20241201</creationdate><title>The distribution of power-related random variables (and their use in clinical trials)</title><author>Mariani, Francesco ; De Santis, Fulvio ; Gubbiotti, Stefania</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-c790c6f1ce8e8e1f5c33b40b28ce0b011fe75be65815b86bf4bcc74f436c01023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Clinical trials</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Electric power distribution</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Null hypothesis</topic><topic>Operations Research/Decision Theory</topic><topic>Probability density functions</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Regular Article</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mariani, Francesco</creatorcontrib><creatorcontrib>De Santis, Fulvio</creatorcontrib><creatorcontrib>Gubbiotti, Stefania</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mariani, Francesco</au><au>De Santis, Fulvio</au><au>Gubbiotti, Stefania</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distribution of power-related random variables (and their use in clinical trials)</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>65</volume><issue>9</issue><spage>5555</spage><epage>5574</epage><pages>5555-5574</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>In the hybrid Bayesian-frequentist approach to hypotheses tests, the power function, i.e. the probability of rejecting the null hypothesis, is a random variable and a pre-experimental evaluation of the study is commonly carried out through the so-called probability of success (PoS). PoS is usually defined as the expected value of the random power that is not necessarily a well-representative summary of the entire distribution. Here, we consider the main definitions of PoS and investigate the power related random variables that induce them. We provide general expressions for their cumulative distribution and probability density functions, as well as closed-form expressions when the test statistic is, at least asymptotically, normal. The analysis of such distributions highlights discrepancies in the main definitions of PoS, leading us to prefer the one based on the utility function of the test. We illustrate our idea through an example and an application to clinical trials, which is a framework where PoS is commonly employed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-024-01599-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0239-1741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2024-12, Vol.65 (9), p.5555-5574 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_3129864956 |
source | SpringerNature Journals |
subjects | Clinical trials Economic Theory/Quantitative Economics/Mathematical Methods Economics Electric power distribution Finance Insurance Management Mathematics and Statistics Null hypothesis Operations Research/Decision Theory Probability density functions Probability Theory and Stochastic Processes Random variables Regular Article Statistical analysis Statistics Statistics for Business |
title | The distribution of power-related random variables (and their use in clinical trials) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distribution%20of%20power-related%20random%20variables%20(and%20their%20use%20in%20clinical%20trials)&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Mariani,%20Francesco&rft.date=2024-12-01&rft.volume=65&rft.issue=9&rft.spage=5555&rft.epage=5574&rft.pages=5555-5574&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-024-01599-1&rft_dat=%3Cproquest_cross%3E3129864956%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129864956&rft_id=info:pmid/&rfr_iscdi=true |