Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations

Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macrosco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2024-11, Vol.33 (6), p.n/a
Hauptverfasser: Villegas, Orlando, Serrano Martínez, Marta, Le Bras, Laura, Ottochian, Alistar, Pineau, Nicolas, Perrier, Aurélie, Lemarchand, Claire A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Macromolecular theory and simulations
container_volume 33
creator Villegas, Orlando
Serrano Martínez, Marta
Le Bras, Laura
Ottochian, Alistar
Pineau, Nicolas
Perrier, Aurélie
Lemarchand, Claire A.
description Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules. Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).
doi_str_mv 10.1002/mats.202400033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129485079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129485079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2423-786d28bd9ebfd592abf48de18023a37b39d0bdc9da20556db79dc5dde12a55dd3</originalsourceid><addsrcrecordid>eNqF0E1PwjAcBvDGaCKiV89NPA_7srLVGyGoJBCJ4Lnp22RkW7HdQrj5EfyMfhKLGD16enr4Pf8mDwDXGA0wQuS2lm0YEERShBClJ6CHGcEJ5ZifxjciJME0Tc_BRQibSDjPSA-IudVr2ZRaVnBSFFa3cOGd6bQ1UO3hYu1a9_n-sdyVbXSqsvDZSt2Wrgl3cNqE8nXdBlh4V8O5q6zuKunhsqxjfqNLcFbIKtirn-yDl_vJavyYzJ4epuPRLNEkJTTJ8qEhuTLcqsIwTqQq0txYnCNCJc0U5QYpo7mRBDE2NCrjRjMTBZEsJu2Dm-PdrXdvnQ2t2LjON_FLQTHhac5QxqMaHJX2LgRvC7H1ZS39XmAkDiOKw4jid8RY4MfCrqzs_h8t5qPV8q_7BYB-eLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129485079</pqid></control><display><type>article</type><title>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Villegas, Orlando ; Serrano Martínez, Marta ; Le Bras, Laura ; Ottochian, Alistar ; Pineau, Nicolas ; Perrier, Aurélie ; Lemarchand, Claire A.</creator><creatorcontrib>Villegas, Orlando ; Serrano Martínez, Marta ; Le Bras, Laura ; Ottochian, Alistar ; Pineau, Nicolas ; Perrier, Aurélie ; Lemarchand, Claire A.</creatorcontrib><description>Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules. Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.202400033</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Azo compounds ; Chains (polymeric) ; Deformation analysis ; Deformation effects ; Distribution functions ; Dynamic structural analysis ; Impact analysis ; Isomers ; Light effects ; Molecular chains ; Molecular dynamics ; photoactive polymers ; Photochromes ; Photochromism ; Polybutadiene ; Polymer films ; Polymers ; Radial distribution ; Shape effects ; Tetrahydrofuran</subject><ispartof>Macromolecular theory and simulations, 2024-11, Vol.33 (6), p.n/a</ispartof><rights>2024 The Author(s). Macromolecular Theory and Simulations published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2423-786d28bd9ebfd592abf48de18023a37b39d0bdc9da20556db79dc5dde12a55dd3</cites><orcidid>0000-0002-2374-9984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.202400033$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.202400033$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Villegas, Orlando</creatorcontrib><creatorcontrib>Serrano Martínez, Marta</creatorcontrib><creatorcontrib>Le Bras, Laura</creatorcontrib><creatorcontrib>Ottochian, Alistar</creatorcontrib><creatorcontrib>Pineau, Nicolas</creatorcontrib><creatorcontrib>Perrier, Aurélie</creatorcontrib><creatorcontrib>Lemarchand, Claire A.</creatorcontrib><title>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</title><title>Macromolecular theory and simulations</title><description>Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules. Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).</description><subject>Absorption spectra</subject><subject>Azo compounds</subject><subject>Chains (polymeric)</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Distribution functions</subject><subject>Dynamic structural analysis</subject><subject>Impact analysis</subject><subject>Isomers</subject><subject>Light effects</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>photoactive polymers</subject><subject>Photochromes</subject><subject>Photochromism</subject><subject>Polybutadiene</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Radial distribution</subject><subject>Shape effects</subject><subject>Tetrahydrofuran</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqF0E1PwjAcBvDGaCKiV89NPA_7srLVGyGoJBCJ4Lnp22RkW7HdQrj5EfyMfhKLGD16enr4Pf8mDwDXGA0wQuS2lm0YEERShBClJ6CHGcEJ5ZifxjciJME0Tc_BRQibSDjPSA-IudVr2ZRaVnBSFFa3cOGd6bQ1UO3hYu1a9_n-sdyVbXSqsvDZSt2Wrgl3cNqE8nXdBlh4V8O5q6zuKunhsqxjfqNLcFbIKtirn-yDl_vJavyYzJ4epuPRLNEkJTTJ8qEhuTLcqsIwTqQq0txYnCNCJc0U5QYpo7mRBDE2NCrjRjMTBZEsJu2Dm-PdrXdvnQ2t2LjON_FLQTHhac5QxqMaHJX2LgRvC7H1ZS39XmAkDiOKw4jid8RY4MfCrqzs_h8t5qPV8q_7BYB-eLc</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Villegas, Orlando</creator><creator>Serrano Martínez, Marta</creator><creator>Le Bras, Laura</creator><creator>Ottochian, Alistar</creator><creator>Pineau, Nicolas</creator><creator>Perrier, Aurélie</creator><creator>Lemarchand, Claire A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2374-9984</orcidid></search><sort><creationdate>202411</creationdate><title>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</title><author>Villegas, Orlando ; Serrano Martínez, Marta ; Le Bras, Laura ; Ottochian, Alistar ; Pineau, Nicolas ; Perrier, Aurélie ; Lemarchand, Claire A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2423-786d28bd9ebfd592abf48de18023a37b39d0bdc9da20556db79dc5dde12a55dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Azo compounds</topic><topic>Chains (polymeric)</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Distribution functions</topic><topic>Dynamic structural analysis</topic><topic>Impact analysis</topic><topic>Isomers</topic><topic>Light effects</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>photoactive polymers</topic><topic>Photochromes</topic><topic>Photochromism</topic><topic>Polybutadiene</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Radial distribution</topic><topic>Shape effects</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villegas, Orlando</creatorcontrib><creatorcontrib>Serrano Martínez, Marta</creatorcontrib><creatorcontrib>Le Bras, Laura</creatorcontrib><creatorcontrib>Ottochian, Alistar</creatorcontrib><creatorcontrib>Pineau, Nicolas</creatorcontrib><creatorcontrib>Perrier, Aurélie</creatorcontrib><creatorcontrib>Lemarchand, Claire A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villegas, Orlando</au><au>Serrano Martínez, Marta</au><au>Le Bras, Laura</au><au>Ottochian, Alistar</au><au>Pineau, Nicolas</au><au>Perrier, Aurélie</au><au>Lemarchand, Claire A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2024-11</date><risdate>2024</risdate><volume>33</volume><issue>6</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules. Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.202400033</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2374-9984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2024-11, Vol.33 (6), p.n/a
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_journals_3129485079
source Wiley Online Library Journals Frontfile Complete
subjects Absorption spectra
Azo compounds
Chains (polymeric)
Deformation analysis
Deformation effects
Distribution functions
Dynamic structural analysis
Impact analysis
Isomers
Light effects
Molecular chains
Molecular dynamics
photoactive polymers
Photochromes
Photochromism
Polybutadiene
Polymer films
Polymers
Radial distribution
Shape effects
Tetrahydrofuran
title Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Effect%20Produced%20by%20Photo%E2%80%90Switchable%20Reactions:%20Insights%20from%20Molecular%20Simulations&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Villegas,%20Orlando&rft.date=2024-11&rft.volume=33&rft.issue=6&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.202400033&rft_dat=%3Cproquest_cross%3E3129485079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129485079&rft_id=info:pmid/&rfr_iscdi=true