Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations
Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macrosco...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 2024-11, Vol.33 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Macromolecular theory and simulations |
container_volume | 33 |
creator | Villegas, Orlando Serrano Martínez, Marta Le Bras, Laura Ottochian, Alistar Pineau, Nicolas Perrier, Aurélie Lemarchand, Claire A. |
description | Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules.
Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene). |
doi_str_mv | 10.1002/mats.202400033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129485079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129485079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2423-786d28bd9ebfd592abf48de18023a37b39d0bdc9da20556db79dc5dde12a55dd3</originalsourceid><addsrcrecordid>eNqF0E1PwjAcBvDGaCKiV89NPA_7srLVGyGoJBCJ4Lnp22RkW7HdQrj5EfyMfhKLGD16enr4Pf8mDwDXGA0wQuS2lm0YEERShBClJ6CHGcEJ5ZifxjciJME0Tc_BRQibSDjPSA-IudVr2ZRaVnBSFFa3cOGd6bQ1UO3hYu1a9_n-sdyVbXSqsvDZSt2Wrgl3cNqE8nXdBlh4V8O5q6zuKunhsqxjfqNLcFbIKtirn-yDl_vJavyYzJ4epuPRLNEkJTTJ8qEhuTLcqsIwTqQq0txYnCNCJc0U5QYpo7mRBDE2NCrjRjMTBZEsJu2Dm-PdrXdvnQ2t2LjON_FLQTHhac5QxqMaHJX2LgRvC7H1ZS39XmAkDiOKw4jid8RY4MfCrqzs_h8t5qPV8q_7BYB-eLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129485079</pqid></control><display><type>article</type><title>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Villegas, Orlando ; Serrano Martínez, Marta ; Le Bras, Laura ; Ottochian, Alistar ; Pineau, Nicolas ; Perrier, Aurélie ; Lemarchand, Claire A.</creator><creatorcontrib>Villegas, Orlando ; Serrano Martínez, Marta ; Le Bras, Laura ; Ottochian, Alistar ; Pineau, Nicolas ; Perrier, Aurélie ; Lemarchand, Claire A.</creatorcontrib><description>Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules.
Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.202400033</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption spectra ; Azo compounds ; Chains (polymeric) ; Deformation analysis ; Deformation effects ; Distribution functions ; Dynamic structural analysis ; Impact analysis ; Isomers ; Light effects ; Molecular chains ; Molecular dynamics ; photoactive polymers ; Photochromes ; Photochromism ; Polybutadiene ; Polymer films ; Polymers ; Radial distribution ; Shape effects ; Tetrahydrofuran</subject><ispartof>Macromolecular theory and simulations, 2024-11, Vol.33 (6), p.n/a</ispartof><rights>2024 The Author(s). Macromolecular Theory and Simulations published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2423-786d28bd9ebfd592abf48de18023a37b39d0bdc9da20556db79dc5dde12a55dd3</cites><orcidid>0000-0002-2374-9984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.202400033$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.202400033$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Villegas, Orlando</creatorcontrib><creatorcontrib>Serrano Martínez, Marta</creatorcontrib><creatorcontrib>Le Bras, Laura</creatorcontrib><creatorcontrib>Ottochian, Alistar</creatorcontrib><creatorcontrib>Pineau, Nicolas</creatorcontrib><creatorcontrib>Perrier, Aurélie</creatorcontrib><creatorcontrib>Lemarchand, Claire A.</creatorcontrib><title>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</title><title>Macromolecular theory and simulations</title><description>Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules.
Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).</description><subject>Absorption spectra</subject><subject>Azo compounds</subject><subject>Chains (polymeric)</subject><subject>Deformation analysis</subject><subject>Deformation effects</subject><subject>Distribution functions</subject><subject>Dynamic structural analysis</subject><subject>Impact analysis</subject><subject>Isomers</subject><subject>Light effects</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>photoactive polymers</subject><subject>Photochromes</subject><subject>Photochromism</subject><subject>Polybutadiene</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Radial distribution</subject><subject>Shape effects</subject><subject>Tetrahydrofuran</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqF0E1PwjAcBvDGaCKiV89NPA_7srLVGyGoJBCJ4Lnp22RkW7HdQrj5EfyMfhKLGD16enr4Pf8mDwDXGA0wQuS2lm0YEERShBClJ6CHGcEJ5ZifxjciJME0Tc_BRQibSDjPSA-IudVr2ZRaVnBSFFa3cOGd6bQ1UO3hYu1a9_n-sdyVbXSqsvDZSt2Wrgl3cNqE8nXdBlh4V8O5q6zuKunhsqxjfqNLcFbIKtirn-yDl_vJavyYzJ4epuPRLNEkJTTJ8qEhuTLcqsIwTqQq0txYnCNCJc0U5QYpo7mRBDE2NCrjRjMTBZEsJu2Dm-PdrXdvnQ2t2LjON_FLQTHhac5QxqMaHJX2LgRvC7H1ZS39XmAkDiOKw4jid8RY4MfCrqzs_h8t5qPV8q_7BYB-eLc</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Villegas, Orlando</creator><creator>Serrano Martínez, Marta</creator><creator>Le Bras, Laura</creator><creator>Ottochian, Alistar</creator><creator>Pineau, Nicolas</creator><creator>Perrier, Aurélie</creator><creator>Lemarchand, Claire A.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2374-9984</orcidid></search><sort><creationdate>202411</creationdate><title>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</title><author>Villegas, Orlando ; Serrano Martínez, Marta ; Le Bras, Laura ; Ottochian, Alistar ; Pineau, Nicolas ; Perrier, Aurélie ; Lemarchand, Claire A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2423-786d28bd9ebfd592abf48de18023a37b39d0bdc9da20556db79dc5dde12a55dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Azo compounds</topic><topic>Chains (polymeric)</topic><topic>Deformation analysis</topic><topic>Deformation effects</topic><topic>Distribution functions</topic><topic>Dynamic structural analysis</topic><topic>Impact analysis</topic><topic>Isomers</topic><topic>Light effects</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>photoactive polymers</topic><topic>Photochromes</topic><topic>Photochromism</topic><topic>Polybutadiene</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Radial distribution</topic><topic>Shape effects</topic><topic>Tetrahydrofuran</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villegas, Orlando</creatorcontrib><creatorcontrib>Serrano Martínez, Marta</creatorcontrib><creatorcontrib>Le Bras, Laura</creatorcontrib><creatorcontrib>Ottochian, Alistar</creatorcontrib><creatorcontrib>Pineau, Nicolas</creatorcontrib><creatorcontrib>Perrier, Aurélie</creatorcontrib><creatorcontrib>Lemarchand, Claire A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villegas, Orlando</au><au>Serrano Martínez, Marta</au><au>Le Bras, Laura</au><au>Ottochian, Alistar</au><au>Pineau, Nicolas</au><au>Perrier, Aurélie</au><au>Lemarchand, Claire A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2024-11</date><risdate>2024</risdate><volume>33</volume><issue>6</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>Light‐responsive shape‐changing polymers are photonastic materials: they can convert light into mechanical energy through macroscopic transformations. Indeed, photochromic molecules embedded in these polymer films present light‐induced structural modifications that can trigger a significant macroscopic deformation. In this theoretical study based on molecular dynamics simulations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this photonastic phenomenon. To this purpose, a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene) is considered. First, the impact of the environment on the photochrome properties is discussed through the analysis of the structural properties, ultra‐violet visible (UV–vis) absorption spectra and dynamical properties of the photoswitch. Then, the impact of the presence of the photochrome on the polymer is studied. At the atomic scale, the radial distribution functions show some differences between the cis and trans isomers due to geometrical effects. At the molecular scale, the analysis of the size and shape of the polymer chains reveals that the photochrome has no impact on the chain properties. Finally, at the macroscopic scale, the cohesive energy density shows that the polymer is stabilized by the presence of photochrome molecules.
Light‐responsive shape‐changing polymers can convert light into mechanical energy through macroscopic transformations. In this theoretical study based on molecular dynamics simulations and time‐dependent density functional theory calculations, analysis tools ranging from atomic to supramolecular scales are developed to investigate this phenomenon for a model system built upon an azobenzene photochrome embedded in different environments (tetrahydrofuran, cis‐1,4‐polybutadiene and hydroxyl‐terminated polybutadiene).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.202400033</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2374-9984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1344 |
ispartof | Macromolecular theory and simulations, 2024-11, Vol.33 (6), p.n/a |
issn | 1022-1344 1521-3919 |
language | eng |
recordid | cdi_proquest_journals_3129485079 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption spectra Azo compounds Chains (polymeric) Deformation analysis Deformation effects Distribution functions Dynamic structural analysis Impact analysis Isomers Light effects Molecular chains Molecular dynamics photoactive polymers Photochromes Photochromism Polybutadiene Polymer films Polymers Radial distribution Shape effects Tetrahydrofuran |
title | Mechanical Effect Produced by Photo‐Switchable Reactions: Insights from Molecular Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Effect%20Produced%20by%20Photo%E2%80%90Switchable%20Reactions:%20Insights%20from%20Molecular%20Simulations&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Villegas,%20Orlando&rft.date=2024-11&rft.volume=33&rft.issue=6&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.202400033&rft_dat=%3Cproquest_cross%3E3129485079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129485079&rft_id=info:pmid/&rfr_iscdi=true |