Depth Factor and Sensitivity Coefficient in Active Stereo‐Camera Imaging
A non‐linear epipole‐featured model was developed and evaluated for structure computation in active convergent stereovision. In this paper, using the developed analytic model, the terms virtual depth and depth factor are introduced, which together define the depth of a world point relative to the co...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2024-11, Vol.2024 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of sensors |
container_volume | 2024 |
creator | Ezebili, Ifeanyi F. Schreve, Kristiaan |
description | A non‐linear epipole‐featured model was developed and evaluated for structure computation in active convergent stereovision. In this paper, using the developed analytic model, the terms virtual depth and depth factor are introduced, which together define the depth of a world point relative to the coordinate frame of the reference camera. Furthermore, an equivalence relation between coplanar–parallel and convergent stereo‐camera imaging systems was established, in which baseline‐to‐depth‐factor ratio is introduced and termed as convergent stereo disparity. This convergent stereo disparity can be equated with the image rectification process in a practical conventional coplanar–parallel stereo‐camera setup. Subsequently, generalised mathematical analyses were done to model and study the variation of the depth sensitivity coefficient and relative depth uncertainty with respect to convergent stereovision system parameters using the developed model. It was observed that different values of the left and right focal lengths are required to achieve a high sensitivity coefficient, a condition that is not conformable with the conventional practice of having the same left and right focal lengths in stereo‐camera imaging. Regarding the variation of the stereo projection and stereo convergence angles, there are trade‐offs between the sensitivity coefficient and relative depth uncertainty. Finally, it was found that a stereo convergence angle of 90° yields the best relative depth uncertainty value at which the focal length–normalized epipole‐to‐principal point distances on both image planes are reciprocals. |
doi_str_mv | 10.1155/2024/6034943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129229559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129229559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-212275dc2c43dc996b5bfcf2433cb3b0970a466f1b3949666fb123c1621ef15f3</originalsourceid><addsrcrecordid>eNo9kM1KAzEcxIMoWKs3HyDg1bXJPx_bHMtqtVLwUAVvIZsmNcXu1iQt9OYj-Iw-iVtaPM0wDDPwQ-iakjtKhRgAAT6QhHHF2QnqUTksixLk8PTfi_dzdJHSkhDJSsZ66PnerfMHHhub24hNM8cz16SQwzbkHa5a532wwTUZhwaPbJc7PMsuuvb3-6cyKxcNnqzMIjSLS3TmzWdyV0fto7fxw2v1VExfHifVaFpYECIXQAFKMbdgOZtbpWQtam89cMZszWqiSmK4lJ7WTHElO1dTYJZKoM5T4Vkf3Rx217H92riU9bLdxKa71IyCAlBCqK51e2jZ2KYUndfrGFYm7jQlek9L72npIy32B3jeW9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129229559</pqid></control><display><type>article</type><title>Depth Factor and Sensitivity Coefficient in Active Stereo‐Camera Imaging</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ezebili, Ifeanyi F. ; Schreve, Kristiaan</creator><contributor>Vargas-Rodriguez, Everardo ; Everardo Vargas-Rodriguez</contributor><creatorcontrib>Ezebili, Ifeanyi F. ; Schreve, Kristiaan ; Vargas-Rodriguez, Everardo ; Everardo Vargas-Rodriguez</creatorcontrib><description>A non‐linear epipole‐featured model was developed and evaluated for structure computation in active convergent stereovision. In this paper, using the developed analytic model, the terms virtual depth and depth factor are introduced, which together define the depth of a world point relative to the coordinate frame of the reference camera. Furthermore, an equivalence relation between coplanar–parallel and convergent stereo‐camera imaging systems was established, in which baseline‐to‐depth‐factor ratio is introduced and termed as convergent stereo disparity. This convergent stereo disparity can be equated with the image rectification process in a practical conventional coplanar–parallel stereo‐camera setup. Subsequently, generalised mathematical analyses were done to model and study the variation of the depth sensitivity coefficient and relative depth uncertainty with respect to convergent stereovision system parameters using the developed model. It was observed that different values of the left and right focal lengths are required to achieve a high sensitivity coefficient, a condition that is not conformable with the conventional practice of having the same left and right focal lengths in stereo‐camera imaging. Regarding the variation of the stereo projection and stereo convergence angles, there are trade‐offs between the sensitivity coefficient and relative depth uncertainty. Finally, it was found that a stereo convergence angle of 90° yields the best relative depth uncertainty value at which the focal length–normalized epipole‐to‐principal point distances on both image planes are reciprocals.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2024/6034943</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Cameras ; Convergence ; Geometry ; Imaging ; Parameter sensitivity ; Parameter uncertainty ; Principal point ; Sensitivity analysis ; Uncertainty analysis</subject><ispartof>Journal of sensors, 2024-11, Vol.2024 (1)</ispartof><rights>Copyright © 2024 Ifeanyi F. Ezebili and Kristiaan Schreve. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-212275dc2c43dc996b5bfcf2433cb3b0970a466f1b3949666fb123c1621ef15f3</cites><orcidid>0000-0003-1537-215X ; 0000-0002-5894-0762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Vargas-Rodriguez, Everardo</contributor><contributor>Everardo Vargas-Rodriguez</contributor><creatorcontrib>Ezebili, Ifeanyi F.</creatorcontrib><creatorcontrib>Schreve, Kristiaan</creatorcontrib><title>Depth Factor and Sensitivity Coefficient in Active Stereo‐Camera Imaging</title><title>Journal of sensors</title><description>A non‐linear epipole‐featured model was developed and evaluated for structure computation in active convergent stereovision. In this paper, using the developed analytic model, the terms virtual depth and depth factor are introduced, which together define the depth of a world point relative to the coordinate frame of the reference camera. Furthermore, an equivalence relation between coplanar–parallel and convergent stereo‐camera imaging systems was established, in which baseline‐to‐depth‐factor ratio is introduced and termed as convergent stereo disparity. This convergent stereo disparity can be equated with the image rectification process in a practical conventional coplanar–parallel stereo‐camera setup. Subsequently, generalised mathematical analyses were done to model and study the variation of the depth sensitivity coefficient and relative depth uncertainty with respect to convergent stereovision system parameters using the developed model. It was observed that different values of the left and right focal lengths are required to achieve a high sensitivity coefficient, a condition that is not conformable with the conventional practice of having the same left and right focal lengths in stereo‐camera imaging. Regarding the variation of the stereo projection and stereo convergence angles, there are trade‐offs between the sensitivity coefficient and relative depth uncertainty. Finally, it was found that a stereo convergence angle of 90° yields the best relative depth uncertainty value at which the focal length–normalized epipole‐to‐principal point distances on both image planes are reciprocals.</description><subject>Cameras</subject><subject>Convergence</subject><subject>Geometry</subject><subject>Imaging</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Principal point</subject><subject>Sensitivity analysis</subject><subject>Uncertainty analysis</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kM1KAzEcxIMoWKs3HyDg1bXJPx_bHMtqtVLwUAVvIZsmNcXu1iQt9OYj-Iw-iVtaPM0wDDPwQ-iakjtKhRgAAT6QhHHF2QnqUTksixLk8PTfi_dzdJHSkhDJSsZ66PnerfMHHhub24hNM8cz16SQwzbkHa5a532wwTUZhwaPbJc7PMsuuvb3-6cyKxcNnqzMIjSLS3TmzWdyV0fto7fxw2v1VExfHifVaFpYECIXQAFKMbdgOZtbpWQtam89cMZszWqiSmK4lJ7WTHElO1dTYJZKoM5T4Vkf3Rx217H92riU9bLdxKa71IyCAlBCqK51e2jZ2KYUndfrGFYm7jQlek9L72npIy32B3jeW9o</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Ezebili, Ifeanyi F.</creator><creator>Schreve, Kristiaan</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1537-215X</orcidid><orcidid>https://orcid.org/0000-0002-5894-0762</orcidid></search><sort><creationdate>20241107</creationdate><title>Depth Factor and Sensitivity Coefficient in Active Stereo‐Camera Imaging</title><author>Ezebili, Ifeanyi F. ; Schreve, Kristiaan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-212275dc2c43dc996b5bfcf2433cb3b0970a466f1b3949666fb123c1621ef15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cameras</topic><topic>Convergence</topic><topic>Geometry</topic><topic>Imaging</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Principal point</topic><topic>Sensitivity analysis</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezebili, Ifeanyi F.</creatorcontrib><creatorcontrib>Schreve, Kristiaan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezebili, Ifeanyi F.</au><au>Schreve, Kristiaan</au><au>Vargas-Rodriguez, Everardo</au><au>Everardo Vargas-Rodriguez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth Factor and Sensitivity Coefficient in Active Stereo‐Camera Imaging</atitle><jtitle>Journal of sensors</jtitle><date>2024-11-07</date><risdate>2024</risdate><volume>2024</volume><issue>1</issue><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>A non‐linear epipole‐featured model was developed and evaluated for structure computation in active convergent stereovision. In this paper, using the developed analytic model, the terms virtual depth and depth factor are introduced, which together define the depth of a world point relative to the coordinate frame of the reference camera. Furthermore, an equivalence relation between coplanar–parallel and convergent stereo‐camera imaging systems was established, in which baseline‐to‐depth‐factor ratio is introduced and termed as convergent stereo disparity. This convergent stereo disparity can be equated with the image rectification process in a practical conventional coplanar–parallel stereo‐camera setup. Subsequently, generalised mathematical analyses were done to model and study the variation of the depth sensitivity coefficient and relative depth uncertainty with respect to convergent stereovision system parameters using the developed model. It was observed that different values of the left and right focal lengths are required to achieve a high sensitivity coefficient, a condition that is not conformable with the conventional practice of having the same left and right focal lengths in stereo‐camera imaging. Regarding the variation of the stereo projection and stereo convergence angles, there are trade‐offs between the sensitivity coefficient and relative depth uncertainty. Finally, it was found that a stereo convergence angle of 90° yields the best relative depth uncertainty value at which the focal length–normalized epipole‐to‐principal point distances on both image planes are reciprocals.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2024/6034943</doi><orcidid>https://orcid.org/0000-0003-1537-215X</orcidid><orcidid>https://orcid.org/0000-0002-5894-0762</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2024-11, Vol.2024 (1) |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_3129229559 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Cameras Convergence Geometry Imaging Parameter sensitivity Parameter uncertainty Principal point Sensitivity analysis Uncertainty analysis |
title | Depth Factor and Sensitivity Coefficient in Active Stereo‐Camera Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20Factor%20and%20Sensitivity%20Coefficient%20in%20Active%20Stereo%E2%80%90Camera%20Imaging&rft.jtitle=Journal%20of%20sensors&rft.au=Ezebili,%20Ifeanyi%20F.&rft.date=2024-11-07&rft.volume=2024&rft.issue=1&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2024/6034943&rft_dat=%3Cproquest_cross%3E3129229559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129229559&rft_id=info:pmid/&rfr_iscdi=true |