Biharmonic Riemannian Submersions from the Product Space M2×R

In this paper, we study biharmonic Riemannian submersions π : M 2 × R → ( N 2 , h ) from a product manifold onto a surface and obtain some local characterizations of such biharmonic maps. Our results show that when the target surface is flat, a proper biharmonic Riemannian submersion π : M 2 × R → (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2025, Vol.35 (1)
Hauptverfasser: Wang, Ze-Ping, Ou, Ye-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of geometric analysis
container_volume 35
creator Wang, Ze-Ping
Ou, Ye-Lin
description In this paper, we study biharmonic Riemannian submersions π : M 2 × R → ( N 2 , h ) from a product manifold onto a surface and obtain some local characterizations of such biharmonic maps. Our results show that when the target surface is flat, a proper biharmonic Riemannian submersion π : M 2 × R → ( N 2 , h ) is locally a projection of a special twisted product, and when the target surface is non-flat, π is locally a special map between two warped product spaces with a warping function that solves a single ODE. As a by-product, we also prove that there is a unique proper biharmonic Riemannian submersion H 2 × R → R 2 given by the projection of a warped product onto the Euclidean plane.
doi_str_mv 10.1007/s12220-024-01828-x
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3129215132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129215132</sourcerecordid><originalsourceid>FETCH-LOGICAL-p72x-9ec0e05e0ead93b8f3ed223bfcad0f8ed5f124dd7fc6efc4562cf92618ee124e3</originalsourceid><addsrcrecordid>eNpFkM9KAzEQh4MoWKsv4CngOTqZbPbPRdBiVagobQ_eljQ7sVvc7Jp0oW_iA_lirlbwNAPzMb8fH2PnEi4lQHYVJSKCAEwEyBxzsTtgI6l1IQDw9XDYQYNIC0yP2UmMG4AkVUk2Yte39dqEpvW15fOaGuN9bTxf9KuGQqxbH7kLbcO3a-Ivoa16u-WLzljiT_j1OT9lR868Rzr7m2O2nN4tJw9i9nz_OLmZiS7DnSjIAoEmIFMVapU7RRWiWjlrKnA5VdpJTKoqczYlZxOdonVDV5kTDQdSY3axf9uF9qOnuC03bR_8kFgqiQVKLRUOlNpTsQu1f6PwT0kofzyVe0_l4Kn89VTu1DdK1ly3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129215132</pqid></control><display><type>article</type><title>Biharmonic Riemannian Submersions from the Product Space M2×R</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Ze-Ping ; Ou, Ye-Lin</creator><creatorcontrib>Wang, Ze-Ping ; Ou, Ye-Lin</creatorcontrib><description>In this paper, we study biharmonic Riemannian submersions π : M 2 × R → ( N 2 , h ) from a product manifold onto a surface and obtain some local characterizations of such biharmonic maps. Our results show that when the target surface is flat, a proper biharmonic Riemannian submersion π : M 2 × R → ( N 2 , h ) is locally a projection of a special twisted product, and when the target surface is non-flat, π is locally a special map between two warped product spaces with a warping function that solves a single ODE. As a by-product, we also prove that there is a unique proper biharmonic Riemannian submersion H 2 × R → R 2 given by the projection of a warped product onto the Euclidean plane.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-024-01828-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Euclidean geometry ; Fourier Analysis ; Global Analysis and Analysis on Manifolds ; Mathematics ; Mathematics and Statistics</subject><ispartof>The Journal of geometric analysis, 2025, Vol.35 (1)</ispartof><rights>Mathematica Josephina, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p72x-9ec0e05e0ead93b8f3ed223bfcad0f8ed5f124dd7fc6efc4562cf92618ee124e3</cites><orcidid>0009-0003-4548-3376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-024-01828-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-024-01828-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Ze-Ping</creatorcontrib><creatorcontrib>Ou, Ye-Lin</creatorcontrib><title>Biharmonic Riemannian Submersions from the Product Space M2×R</title><title>The Journal of geometric analysis</title><addtitle>J Geom Anal</addtitle><description>In this paper, we study biharmonic Riemannian submersions π : M 2 × R → ( N 2 , h ) from a product manifold onto a surface and obtain some local characterizations of such biharmonic maps. Our results show that when the target surface is flat, a proper biharmonic Riemannian submersion π : M 2 × R → ( N 2 , h ) is locally a projection of a special twisted product, and when the target surface is non-flat, π is locally a special map between two warped product spaces with a warping function that solves a single ODE. As a by-product, we also prove that there is a unique proper biharmonic Riemannian submersion H 2 × R → R 2 given by the projection of a warped product onto the Euclidean plane.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Euclidean geometry</subject><subject>Fourier Analysis</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkM9KAzEQh4MoWKsv4CngOTqZbPbPRdBiVagobQ_eljQ7sVvc7Jp0oW_iA_lirlbwNAPzMb8fH2PnEi4lQHYVJSKCAEwEyBxzsTtgI6l1IQDw9XDYQYNIC0yP2UmMG4AkVUk2Yte39dqEpvW15fOaGuN9bTxf9KuGQqxbH7kLbcO3a-Ivoa16u-WLzljiT_j1OT9lR868Rzr7m2O2nN4tJw9i9nz_OLmZiS7DnSjIAoEmIFMVapU7RRWiWjlrKnA5VdpJTKoqczYlZxOdonVDV5kTDQdSY3axf9uF9qOnuC03bR_8kFgqiQVKLRUOlNpTsQu1f6PwT0kofzyVe0_l4Kn89VTu1DdK1ly3</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Wang, Ze-Ping</creator><creator>Ou, Ye-Lin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0009-0003-4548-3376</orcidid></search><sort><creationdate>2025</creationdate><title>Biharmonic Riemannian Submersions from the Product Space M2×R</title><author>Wang, Ze-Ping ; Ou, Ye-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p72x-9ec0e05e0ead93b8f3ed223bfcad0f8ed5f124dd7fc6efc4562cf92618ee124e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Euclidean geometry</topic><topic>Fourier Analysis</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ze-Ping</creatorcontrib><creatorcontrib>Ou, Ye-Lin</creatorcontrib><jtitle>The Journal of geometric analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ze-Ping</au><au>Ou, Ye-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biharmonic Riemannian Submersions from the Product Space M2×R</atitle><jtitle>The Journal of geometric analysis</jtitle><stitle>J Geom Anal</stitle><date>2025</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>In this paper, we study biharmonic Riemannian submersions π : M 2 × R → ( N 2 , h ) from a product manifold onto a surface and obtain some local characterizations of such biharmonic maps. Our results show that when the target surface is flat, a proper biharmonic Riemannian submersion π : M 2 × R → ( N 2 , h ) is locally a projection of a special twisted product, and when the target surface is non-flat, π is locally a special map between two warped product spaces with a warping function that solves a single ODE. As a by-product, we also prove that there is a unique proper biharmonic Riemannian submersion H 2 × R → R 2 given by the projection of a warped product onto the Euclidean plane.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-024-01828-x</doi><orcidid>https://orcid.org/0009-0003-4548-3376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of geometric analysis, 2025, Vol.35 (1)
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_3129215132
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Euclidean geometry
Fourier Analysis
Global Analysis and Analysis on Manifolds
Mathematics
Mathematics and Statistics
title Biharmonic Riemannian Submersions from the Product Space M2×R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biharmonic%20Riemannian%20Submersions%20from%20the%20Product%20Space%20M2%C3%97R&rft.jtitle=The%20Journal%20of%20geometric%20analysis&rft.au=Wang,%20Ze-Ping&rft.date=2025&rft.volume=35&rft.issue=1&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-024-01828-x&rft_dat=%3Cproquest_sprin%3E3129215132%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129215132&rft_id=info:pmid/&rfr_iscdi=true