GNSS‐stereo‐inertial SLAM for arable farming

The accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2024-10, Vol.41 (7), p.2215-2225
Hauptverfasser: Cremona, Javier, Civera, Javier, Kofman, Ernesto, Pire, Taihú
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2225
container_issue 7
container_start_page 2215
container_title Journal of field robotics
container_volume 41
creator Cremona, Javier
Civera, Javier
Kofman, Ernesto
Pire, Taihú
description The accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep a bounded global localization error. Loop closure techniques are significantly challenging in agricultural fields, as the local visual appearance of different views is very similar and might change easily due to weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly with the rest of the robot sensors. In this paper we propose and implement the fusion of global navigation satellite system (GNSS), stereo views, and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly coupled manner, GNSS measurements into the stereo‐inertial ORB‐SLAM3 pipeline. We thoroughly evaluate our implementation in the sequences of the Rosario data set, recorded by an autonomous robot in soybean fields, and our own in‐house data. Our data includes measurements from a conventional GNSS, rarely included in evaluations of state‐of‐the‐art approaches. We characterize the performance of GNSS‐stereo‐inertial SLAM in this application case, reporting pose error reductions between 10% and 30% compared to visual–inertial and loosely coupled GNSS‐stereo‐inertial baselines. In addition to such analysis, we also release the code of our implementation as open source.
doi_str_mv 10.1002/rob.22232
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3129202148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3129202148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2972-4a277a14ad4d15f2b39bd715040e699ef3ebefa01e19f761c8a1445365ad41c83</originalsourceid><addsrcrecordid>eNp1kM1Kw0AURgdRsFYXvkHAlYu085vpLGuxVYgWjK6HSXJHUtJMnWmR7nwEn9EncWrEnav7XTjfvXAQuiR4RDCmY-_KEaWU0SM0IEJkKVeZPP7LQp2isxBWGHM2UWKA8OKxKL4-PsMWPLgYmg78tjFtUuTTh8Q6nxhvyhYSa_y66V7P0Yk1bYCL3zlEL_Pb59ldmi8X97NpnlZUSZpyQ6U0hJua10RYWjJV1pIIzDFkSoFlUII1mABRVmakmkSYC5aJ2IgbG6Kr_u7Gu7cdhK1euZ3v4kvNCFUUU8IP1HVPVd6F4MHqjW_Wxu81wfogREch-kdIZMc9-960sP8f1E_Lm77xDTTIYXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129202148</pqid></control><display><type>article</type><title>GNSS‐stereo‐inertial SLAM for arable farming</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cremona, Javier ; Civera, Javier ; Kofman, Ernesto ; Pire, Taihú</creator><creatorcontrib>Cremona, Javier ; Civera, Javier ; Kofman, Ernesto ; Pire, Taihú</creatorcontrib><description>The accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep a bounded global localization error. Loop closure techniques are significantly challenging in agricultural fields, as the local visual appearance of different views is very similar and might change easily due to weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly with the rest of the robot sensors. In this paper we propose and implement the fusion of global navigation satellite system (GNSS), stereo views, and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly coupled manner, GNSS measurements into the stereo‐inertial ORB‐SLAM3 pipeline. We thoroughly evaluate our implementation in the sequences of the Rosario data set, recorded by an autonomous robot in soybean fields, and our own in‐house data. Our data includes measurements from a conventional GNSS, rarely included in evaluations of state‐of‐the‐art approaches. We characterize the performance of GNSS‐stereo‐inertial SLAM in this application case, reporting pose error reductions between 10% and 30% compared to visual–inertial and loosely coupled GNSS‐stereo‐inertial baselines. In addition to such analysis, we also release the code of our implementation as open source.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.22232</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>agricultural robotics ; Arable land ; Global navigation satellite system ; GNSS‐stereo‐inertial SLAM ; Inertial navigation ; Localization ; precision agriculture ; Robot sensors ; Simultaneous localization and mapping ; Source code ; Visual effects ; Visual fields</subject><ispartof>Journal of field robotics, 2024-10, Vol.41 (7), p.2215-2225</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2972-4a277a14ad4d15f2b39bd715040e699ef3ebefa01e19f761c8a1445365ad41c83</citedby><cites>FETCH-LOGICAL-c2972-4a277a14ad4d15f2b39bd715040e699ef3ebefa01e19f761c8a1445365ad41c83</cites><orcidid>0000-0001-5621-6474 ; 0000-0002-7699-4262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.22232$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.22232$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cremona, Javier</creatorcontrib><creatorcontrib>Civera, Javier</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><creatorcontrib>Pire, Taihú</creatorcontrib><title>GNSS‐stereo‐inertial SLAM for arable farming</title><title>Journal of field robotics</title><description>The accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep a bounded global localization error. Loop closure techniques are significantly challenging in agricultural fields, as the local visual appearance of different views is very similar and might change easily due to weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly with the rest of the robot sensors. In this paper we propose and implement the fusion of global navigation satellite system (GNSS), stereo views, and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly coupled manner, GNSS measurements into the stereo‐inertial ORB‐SLAM3 pipeline. We thoroughly evaluate our implementation in the sequences of the Rosario data set, recorded by an autonomous robot in soybean fields, and our own in‐house data. Our data includes measurements from a conventional GNSS, rarely included in evaluations of state‐of‐the‐art approaches. We characterize the performance of GNSS‐stereo‐inertial SLAM in this application case, reporting pose error reductions between 10% and 30% compared to visual–inertial and loosely coupled GNSS‐stereo‐inertial baselines. In addition to such analysis, we also release the code of our implementation as open source.</description><subject>agricultural robotics</subject><subject>Arable land</subject><subject>Global navigation satellite system</subject><subject>GNSS‐stereo‐inertial SLAM</subject><subject>Inertial navigation</subject><subject>Localization</subject><subject>precision agriculture</subject><subject>Robot sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Source code</subject><subject>Visual effects</subject><subject>Visual fields</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AURgdRsFYXvkHAlYu085vpLGuxVYgWjK6HSXJHUtJMnWmR7nwEn9EncWrEnav7XTjfvXAQuiR4RDCmY-_KEaWU0SM0IEJkKVeZPP7LQp2isxBWGHM2UWKA8OKxKL4-PsMWPLgYmg78tjFtUuTTh8Q6nxhvyhYSa_y66V7P0Yk1bYCL3zlEL_Pb59ldmi8X97NpnlZUSZpyQ6U0hJua10RYWjJV1pIIzDFkSoFlUII1mABRVmakmkSYC5aJ2IgbG6Kr_u7Gu7cdhK1euZ3v4kvNCFUUU8IP1HVPVd6F4MHqjW_Wxu81wfogREch-kdIZMc9-960sP8f1E_Lm77xDTTIYXo</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Cremona, Javier</creator><creator>Civera, Javier</creator><creator>Kofman, Ernesto</creator><creator>Pire, Taihú</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5621-6474</orcidid><orcidid>https://orcid.org/0000-0002-7699-4262</orcidid></search><sort><creationdate>202410</creationdate><title>GNSS‐stereo‐inertial SLAM for arable farming</title><author>Cremona, Javier ; Civera, Javier ; Kofman, Ernesto ; Pire, Taihú</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2972-4a277a14ad4d15f2b39bd715040e699ef3ebefa01e19f761c8a1445365ad41c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>agricultural robotics</topic><topic>Arable land</topic><topic>Global navigation satellite system</topic><topic>GNSS‐stereo‐inertial SLAM</topic><topic>Inertial navigation</topic><topic>Localization</topic><topic>precision agriculture</topic><topic>Robot sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Source code</topic><topic>Visual effects</topic><topic>Visual fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cremona, Javier</creatorcontrib><creatorcontrib>Civera, Javier</creatorcontrib><creatorcontrib>Kofman, Ernesto</creatorcontrib><creatorcontrib>Pire, Taihú</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cremona, Javier</au><au>Civera, Javier</au><au>Kofman, Ernesto</au><au>Pire, Taihú</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GNSS‐stereo‐inertial SLAM for arable farming</atitle><jtitle>Journal of field robotics</jtitle><date>2024-10</date><risdate>2024</risdate><volume>41</volume><issue>7</issue><spage>2215</spage><epage>2225</epage><pages>2215-2225</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>The accelerating pace in the automation of agricultural tasks demands highly accurate and robust localization systems for field robots. Simultaneous Localization and Mapping (SLAM) methods inevitably accumulate drift on exploratory trajectories and primarily rely on place revisiting and loop closing to keep a bounded global localization error. Loop closure techniques are significantly challenging in agricultural fields, as the local visual appearance of different views is very similar and might change easily due to weather effects. A suitable alternative in practice is to employ global sensor positioning systems jointly with the rest of the robot sensors. In this paper we propose and implement the fusion of global navigation satellite system (GNSS), stereo views, and inertial measurements for localization purposes. Specifically, we incorporate, in a tightly coupled manner, GNSS measurements into the stereo‐inertial ORB‐SLAM3 pipeline. We thoroughly evaluate our implementation in the sequences of the Rosario data set, recorded by an autonomous robot in soybean fields, and our own in‐house data. Our data includes measurements from a conventional GNSS, rarely included in evaluations of state‐of‐the‐art approaches. We characterize the performance of GNSS‐stereo‐inertial SLAM in this application case, reporting pose error reductions between 10% and 30% compared to visual–inertial and loosely coupled GNSS‐stereo‐inertial baselines. In addition to such analysis, we also release the code of our implementation as open source.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.22232</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5621-6474</orcidid><orcidid>https://orcid.org/0000-0002-7699-4262</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2024-10, Vol.41 (7), p.2215-2225
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_journals_3129202148
source Wiley Online Library Journals Frontfile Complete
subjects agricultural robotics
Arable land
Global navigation satellite system
GNSS‐stereo‐inertial SLAM
Inertial navigation
Localization
precision agriculture
Robot sensors
Simultaneous localization and mapping
Source code
Visual effects
Visual fields
title GNSS‐stereo‐inertial SLAM for arable farming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GNSS%E2%80%90stereo%E2%80%90inertial%20SLAM%20for%20arable%20farming&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Cremona,%20Javier&rft.date=2024-10&rft.volume=41&rft.issue=7&rft.spage=2215&rft.epage=2225&rft.pages=2215-2225&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.22232&rft_dat=%3Cproquest_cross%3E3129202148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129202148&rft_id=info:pmid/&rfr_iscdi=true