Molecular Information Processing in a Chemical Reaction Network Using Surface‐Mediated Polyelectrolyte Complexation

Biochemical communication is ubiquitous in life. Biology uses chemical reaction networks to regulate concentrations of myriad signaling molecules. Recent advances in supramolecular and systems chemistry demonstrate that feedback mechanisms of such networks can be rationally designed but strategies t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSystemsChem 2024-11, Vol.6 (6), p.n/a
Hauptverfasser: Hazal Koyuncu, A., Allegri, Giulia, Moazzenzade, Taghi, Huskens, Jurriaan, Lindhoud, Saskia, Wong, Albert S. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title ChemSystemsChem
container_volume 6
creator Hazal Koyuncu, A.
Allegri, Giulia
Moazzenzade, Taghi
Huskens, Jurriaan
Lindhoud, Saskia
Wong, Albert S. Y.
description Biochemical communication is ubiquitous in life. Biology uses chemical reaction networks to regulate concentrations of myriad signaling molecules. Recent advances in supramolecular and systems chemistry demonstrate that feedback mechanisms of such networks can be rationally designed but strategies to transmit and process information encoded in molecules are still in their infancy. Here, we designed a polyelectrolyte reaction network maintained under out‐of‐equilibrium conditions using pH gradients in flow. The network comprises two weak polyelectrolytes (polyallylamine, PAH, and polyacrylic acid, PAA) in solution and one immobilized on the surface (poly‐l‐lysine, PLL). We chose PAH and PAA as their complexation process is known to be history‐dependent (i. e., the preceding state of the system can determine the next state). Surprisingly, we found that the hysteresis diminished as the PLL‐coated surface supported rather than perturbed the formation of the complex. PLL‐coated surfaces are further exploited to establish that reversible switching between the assembled and disassembled state of polyelectrolytes can process signals encoded in the frequency and duration of pH pulses. We envision that the strategy employed to modulate information in this polyelectrolyte reaction network could open novel routes to transmit and process molecular information in biologically relevant processes. This work reports the design of a polyelectrolyte‐based reaction network. The network is maintained under out‐of‐equilibrium conditions using a microfluidic channel. Immobilization of one of the polyelectrolytes in the channel provides control over state of the system, i. e., disassembled (polyelectrolytes) and assembled (polyelectrolyte complex). The strategy employed allows for signal modulation encoded in the frequency and duration of pH pulses.
doi_str_mv 10.1002/syst.202400050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128950694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128950694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2420-b92611e3d2d861f6aea6c3e86d13bca84f015689ff4d38f06c4762c8613982663</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpymyJOcU_iZuMKOKnUgsVbQcmy3WuISWJi50IsvEIPCNPQtoiYGO6Z_jOOVcHoVNKhpQQdu5bXw8ZYSEhJCIHqMeiEQlCRsThH32MBt6vO4RFlNNk1EPN1Bagm0I5PK6MdaWqc1vhmbMavM-rR5xXWOH0CcpcqwLfg9I74hbqV-ue8XIHzRtnlIbP948pZLmqIcMzW7TQZdeuEzXg1JabAt52-SfoyKjCw-D79tHy6nKR3gSTu-txejEJNOveDVYJE5QCz1gWC2qEAiU0h1hklK-0ikNDaCTixJgw47EhQocjwXTH8iRmQvA-Otvnbpx9acDXcm0bV3WVklMWJxERSdhRwz2lnfXegZEbl5fKtZISuV1XbteVP-t2hmRveM0LaP-h5fxhvvj1fgHTGIDq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128950694</pqid></control><display><type>article</type><title>Molecular Information Processing in a Chemical Reaction Network Using Surface‐Mediated Polyelectrolyte Complexation</title><source>Wiley Online Library All Journals</source><creator>Hazal Koyuncu, A. ; Allegri, Giulia ; Moazzenzade, Taghi ; Huskens, Jurriaan ; Lindhoud, Saskia ; Wong, Albert S. Y.</creator><creatorcontrib>Hazal Koyuncu, A. ; Allegri, Giulia ; Moazzenzade, Taghi ; Huskens, Jurriaan ; Lindhoud, Saskia ; Wong, Albert S. Y.</creatorcontrib><description>Biochemical communication is ubiquitous in life. Biology uses chemical reaction networks to regulate concentrations of myriad signaling molecules. Recent advances in supramolecular and systems chemistry demonstrate that feedback mechanisms of such networks can be rationally designed but strategies to transmit and process information encoded in molecules are still in their infancy. Here, we designed a polyelectrolyte reaction network maintained under out‐of‐equilibrium conditions using pH gradients in flow. The network comprises two weak polyelectrolytes (polyallylamine, PAH, and polyacrylic acid, PAA) in solution and one immobilized on the surface (poly‐l‐lysine, PLL). We chose PAH and PAA as their complexation process is known to be history‐dependent (i. e., the preceding state of the system can determine the next state). Surprisingly, we found that the hysteresis diminished as the PLL‐coated surface supported rather than perturbed the formation of the complex. PLL‐coated surfaces are further exploited to establish that reversible switching between the assembled and disassembled state of polyelectrolytes can process signals encoded in the frequency and duration of pH pulses. We envision that the strategy employed to modulate information in this polyelectrolyte reaction network could open novel routes to transmit and process molecular information in biologically relevant processes. This work reports the design of a polyelectrolyte‐based reaction network. The network is maintained under out‐of‐equilibrium conditions using a microfluidic channel. Immobilization of one of the polyelectrolytes in the channel provides control over state of the system, i. e., disassembled (polyelectrolytes) and assembled (polyelectrolyte complex). The strategy employed allows for signal modulation encoded in the frequency and duration of pH pulses.</description><identifier>ISSN: 2570-4206</identifier><identifier>EISSN: 2570-4206</identifier><identifier>DOI: 10.1002/syst.202400050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical Reaction Network ; Chemical reactions ; History dependency ; Molecular information processing ; Out-of-equilibrium ; Polyelectrolyte complexes</subject><ispartof>ChemSystemsChem, 2024-11, Vol.6 (6), p.n/a</ispartof><rights>2024 The Authors. ChemSystemsChem published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2420-b92611e3d2d861f6aea6c3e86d13bca84f015689ff4d38f06c4762c8613982663</cites><orcidid>0000-0002-4164-0763 ; 0000-0001-6484-9087 ; 0009-0008-3956-3210 ; 0000-0002-3908-6062 ; 0000-0001-7647-311X ; 0000-0002-4596-9179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsyst.202400050$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsyst.202400050$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hazal Koyuncu, A.</creatorcontrib><creatorcontrib>Allegri, Giulia</creatorcontrib><creatorcontrib>Moazzenzade, Taghi</creatorcontrib><creatorcontrib>Huskens, Jurriaan</creatorcontrib><creatorcontrib>Lindhoud, Saskia</creatorcontrib><creatorcontrib>Wong, Albert S. Y.</creatorcontrib><title>Molecular Information Processing in a Chemical Reaction Network Using Surface‐Mediated Polyelectrolyte Complexation</title><title>ChemSystemsChem</title><description>Biochemical communication is ubiquitous in life. Biology uses chemical reaction networks to regulate concentrations of myriad signaling molecules. Recent advances in supramolecular and systems chemistry demonstrate that feedback mechanisms of such networks can be rationally designed but strategies to transmit and process information encoded in molecules are still in their infancy. Here, we designed a polyelectrolyte reaction network maintained under out‐of‐equilibrium conditions using pH gradients in flow. The network comprises two weak polyelectrolytes (polyallylamine, PAH, and polyacrylic acid, PAA) in solution and one immobilized on the surface (poly‐l‐lysine, PLL). We chose PAH and PAA as their complexation process is known to be history‐dependent (i. e., the preceding state of the system can determine the next state). Surprisingly, we found that the hysteresis diminished as the PLL‐coated surface supported rather than perturbed the formation of the complex. PLL‐coated surfaces are further exploited to establish that reversible switching between the assembled and disassembled state of polyelectrolytes can process signals encoded in the frequency and duration of pH pulses. We envision that the strategy employed to modulate information in this polyelectrolyte reaction network could open novel routes to transmit and process molecular information in biologically relevant processes. This work reports the design of a polyelectrolyte‐based reaction network. The network is maintained under out‐of‐equilibrium conditions using a microfluidic channel. Immobilization of one of the polyelectrolytes in the channel provides control over state of the system, i. e., disassembled (polyelectrolytes) and assembled (polyelectrolyte complex). The strategy employed allows for signal modulation encoded in the frequency and duration of pH pulses.</description><subject>Chemical Reaction Network</subject><subject>Chemical reactions</subject><subject>History dependency</subject><subject>Molecular information processing</subject><subject>Out-of-equilibrium</subject><subject>Polyelectrolyte complexes</subject><issn>2570-4206</issn><issn>2570-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1OwzAUhS0EElXpymyJOcU_iZuMKOKnUgsVbQcmy3WuISWJi50IsvEIPCNPQtoiYGO6Z_jOOVcHoVNKhpQQdu5bXw8ZYSEhJCIHqMeiEQlCRsThH32MBt6vO4RFlNNk1EPN1Bagm0I5PK6MdaWqc1vhmbMavM-rR5xXWOH0CcpcqwLfg9I74hbqV-ue8XIHzRtnlIbP948pZLmqIcMzW7TQZdeuEzXg1JabAt52-SfoyKjCw-D79tHy6nKR3gSTu-txejEJNOveDVYJE5QCz1gWC2qEAiU0h1hklK-0ikNDaCTixJgw47EhQocjwXTH8iRmQvA-Otvnbpx9acDXcm0bV3WVklMWJxERSdhRwz2lnfXegZEbl5fKtZISuV1XbteVP-t2hmRveM0LaP-h5fxhvvj1fgHTGIDq</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Hazal Koyuncu, A.</creator><creator>Allegri, Giulia</creator><creator>Moazzenzade, Taghi</creator><creator>Huskens, Jurriaan</creator><creator>Lindhoud, Saskia</creator><creator>Wong, Albert S. Y.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4164-0763</orcidid><orcidid>https://orcid.org/0000-0001-6484-9087</orcidid><orcidid>https://orcid.org/0009-0008-3956-3210</orcidid><orcidid>https://orcid.org/0000-0002-3908-6062</orcidid><orcidid>https://orcid.org/0000-0001-7647-311X</orcidid><orcidid>https://orcid.org/0000-0002-4596-9179</orcidid></search><sort><creationdate>202411</creationdate><title>Molecular Information Processing in a Chemical Reaction Network Using Surface‐Mediated Polyelectrolyte Complexation</title><author>Hazal Koyuncu, A. ; Allegri, Giulia ; Moazzenzade, Taghi ; Huskens, Jurriaan ; Lindhoud, Saskia ; Wong, Albert S. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2420-b92611e3d2d861f6aea6c3e86d13bca84f015689ff4d38f06c4762c8613982663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical Reaction Network</topic><topic>Chemical reactions</topic><topic>History dependency</topic><topic>Molecular information processing</topic><topic>Out-of-equilibrium</topic><topic>Polyelectrolyte complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazal Koyuncu, A.</creatorcontrib><creatorcontrib>Allegri, Giulia</creatorcontrib><creatorcontrib>Moazzenzade, Taghi</creatorcontrib><creatorcontrib>Huskens, Jurriaan</creatorcontrib><creatorcontrib>Lindhoud, Saskia</creatorcontrib><creatorcontrib>Wong, Albert S. Y.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>ChemSystemsChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazal Koyuncu, A.</au><au>Allegri, Giulia</au><au>Moazzenzade, Taghi</au><au>Huskens, Jurriaan</au><au>Lindhoud, Saskia</au><au>Wong, Albert S. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Information Processing in a Chemical Reaction Network Using Surface‐Mediated Polyelectrolyte Complexation</atitle><jtitle>ChemSystemsChem</jtitle><date>2024-11</date><risdate>2024</risdate><volume>6</volume><issue>6</issue><epage>n/a</epage><issn>2570-4206</issn><eissn>2570-4206</eissn><abstract>Biochemical communication is ubiquitous in life. Biology uses chemical reaction networks to regulate concentrations of myriad signaling molecules. Recent advances in supramolecular and systems chemistry demonstrate that feedback mechanisms of such networks can be rationally designed but strategies to transmit and process information encoded in molecules are still in their infancy. Here, we designed a polyelectrolyte reaction network maintained under out‐of‐equilibrium conditions using pH gradients in flow. The network comprises two weak polyelectrolytes (polyallylamine, PAH, and polyacrylic acid, PAA) in solution and one immobilized on the surface (poly‐l‐lysine, PLL). We chose PAH and PAA as their complexation process is known to be history‐dependent (i. e., the preceding state of the system can determine the next state). Surprisingly, we found that the hysteresis diminished as the PLL‐coated surface supported rather than perturbed the formation of the complex. PLL‐coated surfaces are further exploited to establish that reversible switching between the assembled and disassembled state of polyelectrolytes can process signals encoded in the frequency and duration of pH pulses. We envision that the strategy employed to modulate information in this polyelectrolyte reaction network could open novel routes to transmit and process molecular information in biologically relevant processes. This work reports the design of a polyelectrolyte‐based reaction network. The network is maintained under out‐of‐equilibrium conditions using a microfluidic channel. Immobilization of one of the polyelectrolytes in the channel provides control over state of the system, i. e., disassembled (polyelectrolytes) and assembled (polyelectrolyte complex). The strategy employed allows for signal modulation encoded in the frequency and duration of pH pulses.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/syst.202400050</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4164-0763</orcidid><orcidid>https://orcid.org/0000-0001-6484-9087</orcidid><orcidid>https://orcid.org/0009-0008-3956-3210</orcidid><orcidid>https://orcid.org/0000-0002-3908-6062</orcidid><orcidid>https://orcid.org/0000-0001-7647-311X</orcidid><orcidid>https://orcid.org/0000-0002-4596-9179</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2570-4206
ispartof ChemSystemsChem, 2024-11, Vol.6 (6), p.n/a
issn 2570-4206
2570-4206
language eng
recordid cdi_proquest_journals_3128950694
source Wiley Online Library All Journals
subjects Chemical Reaction Network
Chemical reactions
History dependency
Molecular information processing
Out-of-equilibrium
Polyelectrolyte complexes
title Molecular Information Processing in a Chemical Reaction Network Using Surface‐Mediated Polyelectrolyte Complexation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Information%20Processing%20in%20a%20Chemical%20Reaction%20Network%20Using%20Surface%E2%80%90Mediated%20Polyelectrolyte%20Complexation&rft.jtitle=ChemSystemsChem&rft.au=Hazal%20Koyuncu,%20A.&rft.date=2024-11&rft.volume=6&rft.issue=6&rft.epage=n/a&rft.issn=2570-4206&rft.eissn=2570-4206&rft_id=info:doi/10.1002/syst.202400050&rft_dat=%3Cproquest_cross%3E3128950694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128950694&rft_id=info:pmid/&rfr_iscdi=true