A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics

This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Henneking, Stefan, Grosek, Jacob, Demkowicz, Leszek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Henneking, Stefan
Grosek, Jacob
Demkowicz, Leszek
description This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of \(exp(-i \mathsf{k}z)\) with a user-defined wavenumber \(\mathsf{k}\), where \(z\) is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the \(z\)-direction than the original field, so that it can be more efficiently discretized and computed, enabling solution of the vectorial DPG Maxwell system for \(1000\times\) longer fibers than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3128886135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128886135</sourcerecordid><originalsourceid>FETCH-proquest_journals_31288861353</originalsourceid><addsrcrecordid>eNqNy0FqwzAQhWFRKCS0vsNA1wZbih1vQ7Hpps0mtEujupNUYaxRR3LS48eQHCCrt_i_96CW2pgyb1ZaL1QW47EoCl2vdVWZpZINfOKQWJwlaP0JiQPCu_0_IxF0LONENjn2sGeBlmYrPNqDx-QG-LInPEzuByOcXfqFTQjkhqtPDB_syXm0Ap37RoFtmE_xWT3uLUXMbvukXrp29_qWB-G_CWPqjzyJn1NvSt00TV2aytynLrooTAc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128886135</pqid></control><display><type>article</type><title>A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics</title><source>Freely Accessible Journals</source><creator>Henneking, Stefan ; Grosek, Jacob ; Demkowicz, Leszek</creator><creatorcontrib>Henneking, Stefan ; Grosek, Jacob ; Demkowicz, Leszek</creatorcontrib><description>This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of \(exp(-i \mathsf{k}z)\) with a user-defined wavenumber \(\mathsf{k}\), where \(z\) is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the \(z\)-direction than the original field, so that it can be more efficiently discretized and computed, enabling solution of the vectorial DPG Maxwell system for \(1000\times\) longer fibers than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplifiers ; Coupled modes ; Discretization ; Electromagnetic fields ; Fiber lasers ; Fiber optics ; Maxwell's equations ; Nonlinearity ; Optical fibers ; Perfectly matched layers ; Temperature effects ; Thermodynamics ; Wave propagation ; Waveguides ; Wavelengths ; Ytterbium</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Henneking, Stefan</creatorcontrib><creatorcontrib>Grosek, Jacob</creatorcontrib><creatorcontrib>Demkowicz, Leszek</creatorcontrib><title>A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics</title><title>arXiv.org</title><description>This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of \(exp(-i \mathsf{k}z)\) with a user-defined wavenumber \(\mathsf{k}\), where \(z\) is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the \(z\)-direction than the original field, so that it can be more efficiently discretized and computed, enabling solution of the vectorial DPG Maxwell system for \(1000\times\) longer fibers than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities.</description><subject>Amplifiers</subject><subject>Coupled modes</subject><subject>Discretization</subject><subject>Electromagnetic fields</subject><subject>Fiber lasers</subject><subject>Fiber optics</subject><subject>Maxwell's equations</subject><subject>Nonlinearity</subject><subject>Optical fibers</subject><subject>Perfectly matched layers</subject><subject>Temperature effects</subject><subject>Thermodynamics</subject><subject>Wave propagation</subject><subject>Waveguides</subject><subject>Wavelengths</subject><subject>Ytterbium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy0FqwzAQhWFRKCS0vsNA1wZbih1vQ7Hpps0mtEujupNUYaxRR3LS48eQHCCrt_i_96CW2pgyb1ZaL1QW47EoCl2vdVWZpZINfOKQWJwlaP0JiQPCu_0_IxF0LONENjn2sGeBlmYrPNqDx-QG-LInPEzuByOcXfqFTQjkhqtPDB_syXm0Ap37RoFtmE_xWT3uLUXMbvukXrp29_qWB-G_CWPqjzyJn1NvSt00TV2aytynLrooTAc</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Henneking, Stefan</creator><creator>Grosek, Jacob</creator><creator>Demkowicz, Leszek</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241113</creationdate><title>A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics</title><author>Henneking, Stefan ; Grosek, Jacob ; Demkowicz, Leszek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31288861353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifiers</topic><topic>Coupled modes</topic><topic>Discretization</topic><topic>Electromagnetic fields</topic><topic>Fiber lasers</topic><topic>Fiber optics</topic><topic>Maxwell's equations</topic><topic>Nonlinearity</topic><topic>Optical fibers</topic><topic>Perfectly matched layers</topic><topic>Temperature effects</topic><topic>Thermodynamics</topic><topic>Wave propagation</topic><topic>Waveguides</topic><topic>Wavelengths</topic><topic>Ytterbium</topic><toplevel>online_resources</toplevel><creatorcontrib>Henneking, Stefan</creatorcontrib><creatorcontrib>Grosek, Jacob</creatorcontrib><creatorcontrib>Demkowicz, Leszek</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henneking, Stefan</au><au>Grosek, Jacob</au><au>Demkowicz, Leszek</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics</atitle><jtitle>arXiv.org</jtitle><date>2024-11-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of \(exp(-i \mathsf{k}z)\) with a user-defined wavenumber \(\mathsf{k}\), where \(z\) is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the \(z\)-direction than the original field, so that it can be more efficiently discretized and computed, enabling solution of the vectorial DPG Maxwell system for \(1000\times\) longer fibers than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3128886135
source Freely Accessible Journals
subjects Amplifiers
Coupled modes
Discretization
Electromagnetic fields
Fiber lasers
Fiber optics
Maxwell's equations
Nonlinearity
Optical fibers
Perfectly matched layers
Temperature effects
Thermodynamics
Wave propagation
Waveguides
Wavelengths
Ytterbium
title A Vectorial Envelope Maxwell Formulation for Electromagnetic Waveguides with Application to Nonlinear Fiber Optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Vectorial%20Envelope%20Maxwell%20Formulation%20for%20Electromagnetic%20Waveguides%20with%20Application%20to%20Nonlinear%20Fiber%20Optics&rft.jtitle=arXiv.org&rft.au=Henneking,%20Stefan&rft.date=2024-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3128886135%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128886135&rft_id=info:pmid/&rfr_iscdi=true