Five‐cycle double cover and shortest cycle cover

The 5‐even subgraph cycle double cover conjecture (5‐CDC conjecture) asserts that every bridgeless graph has a 5‐even subgraph double cover. A shortest even subgraph cover of a graph G is a family of even subgraphs which cover all the edges of G and the sum of their lengths is minimum. It is conject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2025-01, Vol.108 (1), p.39-49
Hauptverfasser: Liu, Siyan, Hao, Rong‐Xia, Luo, Rong, Zhang, Cun‐Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 39
container_title Journal of graph theory
container_volume 108
creator Liu, Siyan
Hao, Rong‐Xia
Luo, Rong
Zhang, Cun‐Quan
description The 5‐even subgraph cycle double cover conjecture (5‐CDC conjecture) asserts that every bridgeless graph has a 5‐even subgraph double cover. A shortest even subgraph cover of a graph G is a family of even subgraphs which cover all the edges of G and the sum of their lengths is minimum. It is conjectured that every bridgeless graph G has an even subgraph cover with total length at most 21 15 ∣ E ( G ) ∣. In this paper, we study those two conjectures for weak oddness 2 cubic graphs and present a sufficient condition for such graphs to have a 5‐CDC containing a member with many vertices. As a corollary, we show that for every oddness 2 cubic graph  G satisfying the sufficient condition has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 20 15 ∣ E ( G ) ∣ + 2. We also show that every oddness 2 cubic graph  G with girth at least 30 has a 5‐CDC containing a member of length at least 9 10 ∣ V ( G ) ∣ and thus it has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 21 15 ∣ E ( G ) ∣.
doi_str_mv 10.1002/jgt.23164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128851745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128851745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2574-5a22d401d3e3c13f29c59448c596d67a56244149fa13feb5798bfd9fa7465f0b3</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqGw4AaRWLFI68fYiZeoogVUiU1ZW47jQKJQF7spyo4j9IycBNOwZTOjmf-bh36ErgmeEozprH3dTSkjAk5QQrDMM0xIcYoSzARkElM4RxchtDi2OS4SRBfN3n5_HcxgOptWri9jMm5vfao3VRrenN_ZsEtH_ShcorNad8Fe_eUJelncr-cP2ep5-Ti_W2WG8hwyrimtAJOKWWYIq6k0XAIUMYpK5JoLCkBA1jqKtuS5LMq6imUOgte4ZBN0M-7devfRxydU63q_iScVI7QoOMmBR-p2pIx3IXhbq61v3rUfFMHq1xIVLVFHSyI7G9nPprPD_6B6Wq7HiR9uRWGs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128851745</pqid></control><display><type>article</type><title>Five‐cycle double cover and shortest cycle cover</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Siyan ; Hao, Rong‐Xia ; Luo, Rong ; Zhang, Cun‐Quan</creator><creatorcontrib>Liu, Siyan ; Hao, Rong‐Xia ; Luo, Rong ; Zhang, Cun‐Quan</creatorcontrib><description>The 5‐even subgraph cycle double cover conjecture (5‐CDC conjecture) asserts that every bridgeless graph has a 5‐even subgraph double cover. A shortest even subgraph cover of a graph G is a family of even subgraphs which cover all the edges of G and the sum of their lengths is minimum. It is conjectured that every bridgeless graph G has an even subgraph cover with total length at most 21 15 ∣ E ( G ) ∣. In this paper, we study those two conjectures for weak oddness 2 cubic graphs and present a sufficient condition for such graphs to have a 5‐CDC containing a member with many vertices. As a corollary, we show that for every oddness 2 cubic graph  G satisfying the sufficient condition has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 20 15 ∣ E ( G ) ∣ + 2. We also show that every oddness 2 cubic graph  G with girth at least 30 has a 5‐CDC containing a member of length at least 9 10 ∣ V ( G ) ∣ and thus it has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 21 15 ∣ E ( G ) ∣.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.23164</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>4‐even subgraph cover ; 4‐flow ; Apexes ; Graph theory ; Graphs ; oddness ; shortest even subgraph cover</subject><ispartof>Journal of graph theory, 2025-01, Vol.108 (1), p.39-49</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2574-5a22d401d3e3c13f29c59448c596d67a56244149fa13feb5798bfd9fa7465f0b3</cites><orcidid>0000-0001-6265-0429 ; 0000-0001-5583-4481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.23164$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.23164$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Siyan</creatorcontrib><creatorcontrib>Hao, Rong‐Xia</creatorcontrib><creatorcontrib>Luo, Rong</creatorcontrib><creatorcontrib>Zhang, Cun‐Quan</creatorcontrib><title>Five‐cycle double cover and shortest cycle cover</title><title>Journal of graph theory</title><description>The 5‐even subgraph cycle double cover conjecture (5‐CDC conjecture) asserts that every bridgeless graph has a 5‐even subgraph double cover. A shortest even subgraph cover of a graph G is a family of even subgraphs which cover all the edges of G and the sum of their lengths is minimum. It is conjectured that every bridgeless graph G has an even subgraph cover with total length at most 21 15 ∣ E ( G ) ∣. In this paper, we study those two conjectures for weak oddness 2 cubic graphs and present a sufficient condition for such graphs to have a 5‐CDC containing a member with many vertices. As a corollary, we show that for every oddness 2 cubic graph  G satisfying the sufficient condition has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 20 15 ∣ E ( G ) ∣ + 2. We also show that every oddness 2 cubic graph  G with girth at least 30 has a 5‐CDC containing a member of length at least 9 10 ∣ V ( G ) ∣ and thus it has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 21 15 ∣ E ( G ) ∣.</description><subject>4‐even subgraph cover</subject><subject>4‐flow</subject><subject>Apexes</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>oddness</subject><subject>shortest even subgraph cover</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqGw4AaRWLFI68fYiZeoogVUiU1ZW47jQKJQF7spyo4j9IycBNOwZTOjmf-bh36ErgmeEozprH3dTSkjAk5QQrDMM0xIcYoSzARkElM4RxchtDi2OS4SRBfN3n5_HcxgOptWri9jMm5vfao3VRrenN_ZsEtH_ShcorNad8Fe_eUJelncr-cP2ep5-Ti_W2WG8hwyrimtAJOKWWYIq6k0XAIUMYpK5JoLCkBA1jqKtuS5LMq6imUOgte4ZBN0M-7devfRxydU63q_iScVI7QoOMmBR-p2pIx3IXhbq61v3rUfFMHq1xIVLVFHSyI7G9nPprPD_6B6Wq7HiR9uRWGs</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Liu, Siyan</creator><creator>Hao, Rong‐Xia</creator><creator>Luo, Rong</creator><creator>Zhang, Cun‐Quan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6265-0429</orcidid><orcidid>https://orcid.org/0000-0001-5583-4481</orcidid></search><sort><creationdate>202501</creationdate><title>Five‐cycle double cover and shortest cycle cover</title><author>Liu, Siyan ; Hao, Rong‐Xia ; Luo, Rong ; Zhang, Cun‐Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2574-5a22d401d3e3c13f29c59448c596d67a56244149fa13feb5798bfd9fa7465f0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>4‐even subgraph cover</topic><topic>4‐flow</topic><topic>Apexes</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>oddness</topic><topic>shortest even subgraph cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Siyan</creatorcontrib><creatorcontrib>Hao, Rong‐Xia</creatorcontrib><creatorcontrib>Luo, Rong</creatorcontrib><creatorcontrib>Zhang, Cun‐Quan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Siyan</au><au>Hao, Rong‐Xia</au><au>Luo, Rong</au><au>Zhang, Cun‐Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Five‐cycle double cover and shortest cycle cover</atitle><jtitle>Journal of graph theory</jtitle><date>2025-01</date><risdate>2025</risdate><volume>108</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>The 5‐even subgraph cycle double cover conjecture (5‐CDC conjecture) asserts that every bridgeless graph has a 5‐even subgraph double cover. A shortest even subgraph cover of a graph G is a family of even subgraphs which cover all the edges of G and the sum of their lengths is minimum. It is conjectured that every bridgeless graph G has an even subgraph cover with total length at most 21 15 ∣ E ( G ) ∣. In this paper, we study those two conjectures for weak oddness 2 cubic graphs and present a sufficient condition for such graphs to have a 5‐CDC containing a member with many vertices. As a corollary, we show that for every oddness 2 cubic graph  G satisfying the sufficient condition has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 20 15 ∣ E ( G ) ∣ + 2. We also show that every oddness 2 cubic graph  G with girth at least 30 has a 5‐CDC containing a member of length at least 9 10 ∣ V ( G ) ∣ and thus it has a 4‐even subgraph ( 1 , 2 )‐cover with total length at most 21 15 ∣ E ( G ) ∣.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.23164</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6265-0429</orcidid><orcidid>https://orcid.org/0000-0001-5583-4481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2025-01, Vol.108 (1), p.39-49
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_3128851745
source Wiley Online Library Journals Frontfile Complete
subjects 4‐even subgraph cover
4‐flow
Apexes
Graph theory
Graphs
oddness
shortest even subgraph cover
title Five‐cycle double cover and shortest cycle cover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Five%E2%80%90cycle%20double%20cover%20and%20shortest%20cycle%20cover&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Liu,%20Siyan&rft.date=2025-01&rft.volume=108&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.23164&rft_dat=%3Cproquest_cross%3E3128851745%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128851745&rft_id=info:pmid/&rfr_iscdi=true