On application of annihilating content of polynomial on EM ring properties on R[x] and R[[x]]
Let R be a commutative ring with identity and f (x) is a zero divisor polynomial in R[x]. If f (x) = cf g(x) with cf ∈ R and g(x) ∈ R[x] is not a zero divisor, then cf is called an annihilating content for f (x). A ring where every zero-divisor polynomial in R[x] has an annihilating content is calle...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3201 |
creator | Hatmakelana, Carolus P. L. J. Wahyuni, Sri |
description | Let R be a commutative ring with identity and f (x) is a zero divisor polynomial in R[x]. If f (x) = cf g(x) with cf ∈ R and g(x) ∈ R[x] is not a zero divisor, then cf is called an annihilating content for f (x). A ring where every zero-divisor polynomial in R[x] has an annihilating content is called an EM ring. Moreover, if every zero divisor formal power series in R[[x]] has an anni-hilating content and R is an EM-ring, then R is called a strongly EM-ring. In this paper, we discussed the property of annihilating content, EM-ring, strongly EM-ring, and the relationship between EM-ring and some other rings such as Noetherian ring, Bézout ring and Armendariz ring. In this paper, we prove that C(f) = cf C(g) is the sufficient and necessary condition for cf to be an annihilating content for f (x). We also find the following results: if a ring R is strongly EM-ring, then R[x] also a strongly EM-ring; a polynomial ring R[x] is a strongly EM-ring if the ring R is a strongly EM-ring and a cartesian product of strongly EM-rings is a strongly EM-ring too. Beside that we find the condition that makes Bézout ring and Armendariz ring are strongly EM-ring. |
doi_str_mv | 10.1063/5.0230658 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3128842850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128842850</sourcerecordid><originalsourceid>FETCH-LOGICAL-p638-17052045783c540359cfc27f5d5440abf7b5061f3ba312ab8d734a754aa5e2983</originalsourceid><addsrcrecordid>eNotUE1Lw0AQXUTBWj34DwLehNTZj8lujlLqB1QK0oMgYdmkiW5Jd9ckBfvv3die5s3jzZuZR8gthRmFjD_gDBiHDNUZmVBEmsqMZudkApCLlAn-cUmu-n4LwHIp1YQUK5eYEFpbmcF6l_gmMc7Zb9vG3n0llXdD7YaRD749OL-zpk2icPGWdKMgdD7U3WDrfmTfP3-LaLCJIKLimlw0pu3rm1OdkvXTYj1_SZer59f54zINGVcplYAMBErFKxTAMa-aiskGNygEmLKRJUJGG14aTpkp1UZyYSQKY7BmueJTcne0jcf87Ot-0Fu_71zcqOOAUoIphKi6P6r6yg7_3-rQ2Z3pDpqCHtPTqE_p8T_EoGA3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3128842850</pqid></control><display><type>conference_proceeding</type><title>On application of annihilating content of polynomial on EM ring properties on R[x] and R[[x]]</title><source>AIP Journals Complete</source><creator>Hatmakelana, Carolus P. L. J. ; Wahyuni, Sri</creator><contributor>Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</contributor><creatorcontrib>Hatmakelana, Carolus P. L. J. ; Wahyuni, Sri ; Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</creatorcontrib><description>Let R be a commutative ring with identity and f (x) is a zero divisor polynomial in R[x]. If f (x) = cf g(x) with cf ∈ R and g(x) ∈ R[x] is not a zero divisor, then cf is called an annihilating content for f (x). A ring where every zero-divisor polynomial in R[x] has an annihilating content is called an EM ring. Moreover, if every zero divisor formal power series in R[[x]] has an anni-hilating content and R is an EM-ring, then R is called a strongly EM-ring. In this paper, we discussed the property of annihilating content, EM-ring, strongly EM-ring, and the relationship between EM-ring and some other rings such as Noetherian ring, Bézout ring and Armendariz ring. In this paper, we prove that C(f) = cf C(g) is the sufficient and necessary condition for cf to be an annihilating content for f (x). We also find the following results: if a ring R is strongly EM-ring, then R[x] also a strongly EM-ring; a polynomial ring R[x] is a strongly EM-ring if the ring R is a strongly EM-ring and a cartesian product of strongly EM-rings is a strongly EM-ring too. Beside that we find the condition that makes Bézout ring and Armendariz ring are strongly EM-ring.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0230658</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Polynomials ; Power series ; Rings (mathematics)</subject><ispartof>AIP conference proceedings, 2024, Vol.3201 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0230658$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Ernanto, Iwan</contributor><contributor>Purisha, Zenith</contributor><contributor>Susyanto, Nanang</contributor><contributor>Tantrawan, Made</contributor><contributor>Susanti, Yeni</contributor><creatorcontrib>Hatmakelana, Carolus P. L. J.</creatorcontrib><creatorcontrib>Wahyuni, Sri</creatorcontrib><title>On application of annihilating content of polynomial on EM ring properties on R[x] and R[[x]]</title><title>AIP conference proceedings</title><description>Let R be a commutative ring with identity and f (x) is a zero divisor polynomial in R[x]. If f (x) = cf g(x) with cf ∈ R and g(x) ∈ R[x] is not a zero divisor, then cf is called an annihilating content for f (x). A ring where every zero-divisor polynomial in R[x] has an annihilating content is called an EM ring. Moreover, if every zero divisor formal power series in R[[x]] has an anni-hilating content and R is an EM-ring, then R is called a strongly EM-ring. In this paper, we discussed the property of annihilating content, EM-ring, strongly EM-ring, and the relationship between EM-ring and some other rings such as Noetherian ring, Bézout ring and Armendariz ring. In this paper, we prove that C(f) = cf C(g) is the sufficient and necessary condition for cf to be an annihilating content for f (x). We also find the following results: if a ring R is strongly EM-ring, then R[x] also a strongly EM-ring; a polynomial ring R[x] is a strongly EM-ring if the ring R is a strongly EM-ring and a cartesian product of strongly EM-rings is a strongly EM-ring too. Beside that we find the condition that makes Bézout ring and Armendariz ring are strongly EM-ring.</description><subject>Polynomials</subject><subject>Power series</subject><subject>Rings (mathematics)</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUE1Lw0AQXUTBWj34DwLehNTZj8lujlLqB1QK0oMgYdmkiW5Jd9ckBfvv3die5s3jzZuZR8gthRmFjD_gDBiHDNUZmVBEmsqMZudkApCLlAn-cUmu-n4LwHIp1YQUK5eYEFpbmcF6l_gmMc7Zb9vG3n0llXdD7YaRD749OL-zpk2icPGWdKMgdD7U3WDrfmTfP3-LaLCJIKLimlw0pu3rm1OdkvXTYj1_SZer59f54zINGVcplYAMBErFKxTAMa-aiskGNygEmLKRJUJGG14aTpkp1UZyYSQKY7BmueJTcne0jcf87Ot-0Fu_71zcqOOAUoIphKi6P6r6yg7_3-rQ2Z3pDpqCHtPTqE_p8T_EoGA3</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Hatmakelana, Carolus P. L. J.</creator><creator>Wahyuni, Sri</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241115</creationdate><title>On application of annihilating content of polynomial on EM ring properties on R[x] and R[[x]]</title><author>Hatmakelana, Carolus P. L. J. ; Wahyuni, Sri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p638-17052045783c540359cfc27f5d5440abf7b5061f3ba312ab8d734a754aa5e2983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Polynomials</topic><topic>Power series</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hatmakelana, Carolus P. L. J.</creatorcontrib><creatorcontrib>Wahyuni, Sri</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hatmakelana, Carolus P. L. J.</au><au>Wahyuni, Sri</au><au>Ernanto, Iwan</au><au>Purisha, Zenith</au><au>Susyanto, Nanang</au><au>Tantrawan, Made</au><au>Susanti, Yeni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On application of annihilating content of polynomial on EM ring properties on R[x] and R[[x]]</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-15</date><risdate>2024</risdate><volume>3201</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Let R be a commutative ring with identity and f (x) is a zero divisor polynomial in R[x]. If f (x) = cf g(x) with cf ∈ R and g(x) ∈ R[x] is not a zero divisor, then cf is called an annihilating content for f (x). A ring where every zero-divisor polynomial in R[x] has an annihilating content is called an EM ring. Moreover, if every zero divisor formal power series in R[[x]] has an anni-hilating content and R is an EM-ring, then R is called a strongly EM-ring. In this paper, we discussed the property of annihilating content, EM-ring, strongly EM-ring, and the relationship between EM-ring and some other rings such as Noetherian ring, Bézout ring and Armendariz ring. In this paper, we prove that C(f) = cf C(g) is the sufficient and necessary condition for cf to be an annihilating content for f (x). We also find the following results: if a ring R is strongly EM-ring, then R[x] also a strongly EM-ring; a polynomial ring R[x] is a strongly EM-ring if the ring R is a strongly EM-ring and a cartesian product of strongly EM-rings is a strongly EM-ring too. Beside that we find the condition that makes Bézout ring and Armendariz ring are strongly EM-ring.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0230658</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3201 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3128842850 |
source | AIP Journals Complete |
subjects | Polynomials Power series Rings (mathematics) |
title | On application of annihilating content of polynomial on EM ring properties on R[x] and R[[x]] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20application%20of%20annihilating%20content%20of%20polynomial%20on%20EM%20ring%20properties%20on%20R%5Bx%5D%20and%20R%5B%5Bx%5D%5D&rft.btitle=AIP%20conference%20proceedings&rft.au=Hatmakelana,%20Carolus%20P.%20L.%20J.&rft.date=2024-11-15&rft.volume=3201&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0230658&rft_dat=%3Cproquest_scita%3E3128842850%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128842850&rft_id=info:pmid/&rfr_iscdi=true |