Beta-Binomial model in small area estimation using adjusted profile Hierarchical Likelihood approach

Small Area Estimation (SAE) is a statistical technique for estimating parameters in subpopulations with small sample sizes. Generally, the Bayes approach is used to estimate binary model parameters in SAE. Researchers have developed a Beta-Binomial model in SAE using a Hierarchical Likelihood approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sunandi, Etis, Notodiputro, Khairil Anwar, Indahwati, Soleh, Agus M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3201
creator Sunandi, Etis
Notodiputro, Khairil Anwar
Indahwati
Soleh, Agus M.
description Small Area Estimation (SAE) is a statistical technique for estimating parameters in subpopulations with small sample sizes. Generally, the Bayes approach is used to estimate binary model parameters in SAE. Researchers have developed a Beta-Binomial model in SAE using a Hierarchical Likelihood approach called SAE-BB-HL. However, the results of the fixed effect estimators are biased. According to previous research, this problem can be solved using the Adjusted Profile Hierarchical Likelihood (APHL) approach. This study proposes a Beta-Binomial model in SAE using the APHL approach, namely SAE-BB-APHL. The model’s performance is investigated through simulation data with eight scenarios considering five factors. The analysis of combination factors uses an ANOVA test with the Mean Squared Error of Prediction (MSEP) as the response. The SAE-BB-APHL is also applied to illiteracy rate data at the sub-district level in Bengkulu Province. The results show that the SAE-BB-APHL had a much smaller bias than the SAE-BB-HL. There is significant interaction among the five factors. SAE-BB-APHL has the smallest MSEP in the first population, sample size, sample percentage, and random effect area variance of 15, 2%, and 2, respectively. From the empirical data results, the SAE-BB-APHL illiteracy rate estimator has the same tendency as the SAE-BB-HL estimator.
doi_str_mv 10.1063/5.0230933
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3128842621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128842621</sourcerecordid><originalsourceid>FETCH-LOGICAL-p633-6f718cbc7428c023c476d3f8be1760192052ce0583e92f9bcc956625d0c8a6d33</originalsourceid><addsrcrecordid>eNotkL1OwzAYRS0EEqUw8AaW2JBS_BP_jbSiFKkSSwc2y7Ud6pLEwU4G3h5DO33L0b3fuQDcY7TAiNMntkCEIkXpBZhhxnAlOOaXYIaQqitS049rcJPzESGihJAz4JZ-NNUy9LELpoVddL6FoYe5M20LTfIG-jyGzowh9nDKof-Exh2nPHoHhxSb0Hq4CT6ZZA_Bloht-PJtOMTooBkKYezhFlw1ps3-7nznYLd-2a021fb99W31vK0GTmnFG4Gl3VtRE2mLha0Fd7SRe48FR1gRxIj1iEnqFWnU3lrFOCfMIStNIekcPJxiS-v3VN7WxzilvjRqiomUNeEEF-rxRGUbxn8tPaQimH40RvpvRM30eUT6C5_oY9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3128842621</pqid></control><display><type>conference_proceeding</type><title>Beta-Binomial model in small area estimation using adjusted profile Hierarchical Likelihood approach</title><source>AIP Journals Complete</source><creator>Sunandi, Etis ; Notodiputro, Khairil Anwar ; Indahwati ; Soleh, Agus M.</creator><contributor>Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</contributor><creatorcontrib>Sunandi, Etis ; Notodiputro, Khairil Anwar ; Indahwati ; Soleh, Agus M. ; Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</creatorcontrib><description>Small Area Estimation (SAE) is a statistical technique for estimating parameters in subpopulations with small sample sizes. Generally, the Bayes approach is used to estimate binary model parameters in SAE. Researchers have developed a Beta-Binomial model in SAE using a Hierarchical Likelihood approach called SAE-BB-HL. However, the results of the fixed effect estimators are biased. According to previous research, this problem can be solved using the Adjusted Profile Hierarchical Likelihood (APHL) approach. This study proposes a Beta-Binomial model in SAE using the APHL approach, namely SAE-BB-APHL. The model’s performance is investigated through simulation data with eight scenarios considering five factors. The analysis of combination factors uses an ANOVA test with the Mean Squared Error of Prediction (MSEP) as the response. The SAE-BB-APHL is also applied to illiteracy rate data at the sub-district level in Bengkulu Province. The results show that the SAE-BB-APHL had a much smaller bias than the SAE-BB-HL. There is significant interaction among the five factors. SAE-BB-APHL has the smallest MSEP in the first population, sample size, sample percentage, and random effect area variance of 15, 2%, and 2, respectively. From the empirical data results, the SAE-BB-APHL illiteracy rate estimator has the same tendency as the SAE-BB-HL estimator.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0230933</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Error analysis ; Illiteracy ; Parameter estimation ; Variance analysis</subject><ispartof>AIP conference proceedings, 2024, Vol.3201 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0230933$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Ernanto, Iwan</contributor><contributor>Purisha, Zenith</contributor><contributor>Susyanto, Nanang</contributor><contributor>Tantrawan, Made</contributor><contributor>Susanti, Yeni</contributor><creatorcontrib>Sunandi, Etis</creatorcontrib><creatorcontrib>Notodiputro, Khairil Anwar</creatorcontrib><creatorcontrib>Indahwati</creatorcontrib><creatorcontrib>Soleh, Agus M.</creatorcontrib><title>Beta-Binomial model in small area estimation using adjusted profile Hierarchical Likelihood approach</title><title>AIP conference proceedings</title><description>Small Area Estimation (SAE) is a statistical technique for estimating parameters in subpopulations with small sample sizes. Generally, the Bayes approach is used to estimate binary model parameters in SAE. Researchers have developed a Beta-Binomial model in SAE using a Hierarchical Likelihood approach called SAE-BB-HL. However, the results of the fixed effect estimators are biased. According to previous research, this problem can be solved using the Adjusted Profile Hierarchical Likelihood (APHL) approach. This study proposes a Beta-Binomial model in SAE using the APHL approach, namely SAE-BB-APHL. The model’s performance is investigated through simulation data with eight scenarios considering five factors. The analysis of combination factors uses an ANOVA test with the Mean Squared Error of Prediction (MSEP) as the response. The SAE-BB-APHL is also applied to illiteracy rate data at the sub-district level in Bengkulu Province. The results show that the SAE-BB-APHL had a much smaller bias than the SAE-BB-HL. There is significant interaction among the five factors. SAE-BB-APHL has the smallest MSEP in the first population, sample size, sample percentage, and random effect area variance of 15, 2%, and 2, respectively. From the empirical data results, the SAE-BB-APHL illiteracy rate estimator has the same tendency as the SAE-BB-HL estimator.</description><subject>Error analysis</subject><subject>Illiteracy</subject><subject>Parameter estimation</subject><subject>Variance analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkL1OwzAYRS0EEqUw8AaW2JBS_BP_jbSiFKkSSwc2y7Ud6pLEwU4G3h5DO33L0b3fuQDcY7TAiNMntkCEIkXpBZhhxnAlOOaXYIaQqitS049rcJPzESGihJAz4JZ-NNUy9LELpoVddL6FoYe5M20LTfIG-jyGzowh9nDKof-Exh2nPHoHhxSb0Hq4CT6ZZA_Bloht-PJtOMTooBkKYezhFlw1ps3-7nznYLd-2a021fb99W31vK0GTmnFG4Gl3VtRE2mLha0Fd7SRe48FR1gRxIj1iEnqFWnU3lrFOCfMIStNIekcPJxiS-v3VN7WxzilvjRqiomUNeEEF-rxRGUbxn8tPaQimH40RvpvRM30eUT6C5_oY9Y</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Sunandi, Etis</creator><creator>Notodiputro, Khairil Anwar</creator><creator>Indahwati</creator><creator>Soleh, Agus M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241115</creationdate><title>Beta-Binomial model in small area estimation using adjusted profile Hierarchical Likelihood approach</title><author>Sunandi, Etis ; Notodiputro, Khairil Anwar ; Indahwati ; Soleh, Agus M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p633-6f718cbc7428c023c476d3f8be1760192052ce0583e92f9bcc956625d0c8a6d33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Error analysis</topic><topic>Illiteracy</topic><topic>Parameter estimation</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunandi, Etis</creatorcontrib><creatorcontrib>Notodiputro, Khairil Anwar</creatorcontrib><creatorcontrib>Indahwati</creatorcontrib><creatorcontrib>Soleh, Agus M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunandi, Etis</au><au>Notodiputro, Khairil Anwar</au><au>Indahwati</au><au>Soleh, Agus M.</au><au>Ernanto, Iwan</au><au>Purisha, Zenith</au><au>Susyanto, Nanang</au><au>Tantrawan, Made</au><au>Susanti, Yeni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Beta-Binomial model in small area estimation using adjusted profile Hierarchical Likelihood approach</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-15</date><risdate>2024</risdate><volume>3201</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Small Area Estimation (SAE) is a statistical technique for estimating parameters in subpopulations with small sample sizes. Generally, the Bayes approach is used to estimate binary model parameters in SAE. Researchers have developed a Beta-Binomial model in SAE using a Hierarchical Likelihood approach called SAE-BB-HL. However, the results of the fixed effect estimators are biased. According to previous research, this problem can be solved using the Adjusted Profile Hierarchical Likelihood (APHL) approach. This study proposes a Beta-Binomial model in SAE using the APHL approach, namely SAE-BB-APHL. The model’s performance is investigated through simulation data with eight scenarios considering five factors. The analysis of combination factors uses an ANOVA test with the Mean Squared Error of Prediction (MSEP) as the response. The SAE-BB-APHL is also applied to illiteracy rate data at the sub-district level in Bengkulu Province. The results show that the SAE-BB-APHL had a much smaller bias than the SAE-BB-HL. There is significant interaction among the five factors. SAE-BB-APHL has the smallest MSEP in the first population, sample size, sample percentage, and random effect area variance of 15, 2%, and 2, respectively. From the empirical data results, the SAE-BB-APHL illiteracy rate estimator has the same tendency as the SAE-BB-HL estimator.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0230933</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3201 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3128842621
source AIP Journals Complete
subjects Error analysis
Illiteracy
Parameter estimation
Variance analysis
title Beta-Binomial model in small area estimation using adjusted profile Hierarchical Likelihood approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A22%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Beta-Binomial%20model%20in%20small%20area%20estimation%20using%20adjusted%20profile%20Hierarchical%20Likelihood%20approach&rft.btitle=AIP%20conference%20proceedings&rft.au=Sunandi,%20Etis&rft.date=2024-11-15&rft.volume=3201&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0230933&rft_dat=%3Cproquest_scita%3E3128842621%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128842621&rft_id=info:pmid/&rfr_iscdi=true