Solving a mathematical model through Chi-Squared test on queuing problem in general hospital
Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3201 |
creator | Ariff, Hajar Kamardan, M. Ghazali Nawawi, M. K. M. Khalid, Kamil |
description | Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution. |
doi_str_mv | 10.1063/5.0232716 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3128842580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128842580</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-92ad935a028d2418446b884530936294713800b549faf82ada0aeb4bee3b6ca63</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15jmZpRRfUHDRLlwIIdNJOykzk2mSEfz3ptjNPZvvnHs4CN0TWBCQ7EksgDJaEnmBZkQIUpSSyEs0A6h4QTn7ukY3MR4AaFWWaoa-1777ccMeG9yb1Np83NZ0uPeN7XBqg5_2LV62rlgfJxNsg5ONCfsBHyc7nYxj8HVne-wGvLeDDdnc-ji6ZLpbdLUzXbR3Z52jzevLZvlerD7fPpbPq2KUTBYVNU3FhAGqGsqJ4lzWSnHBoGKSVrwkTAHUglc7s1MZNmBszWtrWS23RrI5eviPzVVyq5j0wU9hyB81IzRHUaEgU4__VNzmbsn5QY_B9Sb8agL6NJ4W-jwe-wPVo2C4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3128842580</pqid></control><display><type>conference_proceeding</type><title>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</title><source>AIP Journals Complete</source><creator>Ariff, Hajar ; Kamardan, M. Ghazali ; Nawawi, M. K. M. ; Khalid, Kamil</creator><contributor>Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</contributor><creatorcontrib>Ariff, Hajar ; Kamardan, M. Ghazali ; Nawawi, M. K. M. ; Khalid, Kamil ; Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</creatorcontrib><description>Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0232716</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chi-square test ; Health care ; Pattern analysis ; Probability distribution functions ; Queueing ; Simulation models ; Statistical tests</subject><ispartof>AIP conference proceedings, 2024, Vol.3201 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0232716$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Ernanto, Iwan</contributor><contributor>Purisha, Zenith</contributor><contributor>Susyanto, Nanang</contributor><contributor>Tantrawan, Made</contributor><contributor>Susanti, Yeni</contributor><creatorcontrib>Ariff, Hajar</creatorcontrib><creatorcontrib>Kamardan, M. Ghazali</creatorcontrib><creatorcontrib>Nawawi, M. K. M.</creatorcontrib><creatorcontrib>Khalid, Kamil</creatorcontrib><title>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</title><title>AIP conference proceedings</title><description>Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.</description><subject>Chi-square test</subject><subject>Health care</subject><subject>Pattern analysis</subject><subject>Probability distribution functions</subject><subject>Queueing</subject><subject>Simulation models</subject><subject>Statistical tests</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15jmZpRRfUHDRLlwIIdNJOykzk2mSEfz3ptjNPZvvnHs4CN0TWBCQ7EksgDJaEnmBZkQIUpSSyEs0A6h4QTn7ukY3MR4AaFWWaoa-1777ccMeG9yb1Np83NZ0uPeN7XBqg5_2LV62rlgfJxNsg5ONCfsBHyc7nYxj8HVne-wGvLeDDdnc-ji6ZLpbdLUzXbR3Z52jzevLZvlerD7fPpbPq2KUTBYVNU3FhAGqGsqJ4lzWSnHBoGKSVrwkTAHUglc7s1MZNmBszWtrWS23RrI5eviPzVVyq5j0wU9hyB81IzRHUaEgU4__VNzmbsn5QY_B9Sb8agL6NJ4W-jwe-wPVo2C4</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Ariff, Hajar</creator><creator>Kamardan, M. Ghazali</creator><creator>Nawawi, M. K. M.</creator><creator>Khalid, Kamil</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241115</creationdate><title>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</title><author>Ariff, Hajar ; Kamardan, M. Ghazali ; Nawawi, M. K. M. ; Khalid, Kamil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-92ad935a028d2418446b884530936294713800b549faf82ada0aeb4bee3b6ca63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chi-square test</topic><topic>Health care</topic><topic>Pattern analysis</topic><topic>Probability distribution functions</topic><topic>Queueing</topic><topic>Simulation models</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ariff, Hajar</creatorcontrib><creatorcontrib>Kamardan, M. Ghazali</creatorcontrib><creatorcontrib>Nawawi, M. K. M.</creatorcontrib><creatorcontrib>Khalid, Kamil</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ariff, Hajar</au><au>Kamardan, M. Ghazali</au><au>Nawawi, M. K. M.</au><au>Khalid, Kamil</au><au>Ernanto, Iwan</au><au>Purisha, Zenith</au><au>Susyanto, Nanang</au><au>Tantrawan, Made</au><au>Susanti, Yeni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-15</date><risdate>2024</risdate><volume>3201</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0232716</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3201 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3128842580 |
source | AIP Journals Complete |
subjects | Chi-square test Health care Pattern analysis Probability distribution functions Queueing Simulation models Statistical tests |
title | Solving a mathematical model through Chi-Squared test on queuing problem in general hospital |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20a%20mathematical%20model%20through%20Chi-Squared%20test%20on%20queuing%20problem%20in%20general%20hospital&rft.btitle=AIP%20conference%20proceedings&rft.au=Ariff,%20Hajar&rft.date=2024-11-15&rft.volume=3201&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0232716&rft_dat=%3Cproquest_scita%3E3128842580%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128842580&rft_id=info:pmid/&rfr_iscdi=true |