Solving a mathematical model through Chi-Squared test on queuing problem in general hospital

Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ariff, Hajar, Kamardan, M. Ghazali, Nawawi, M. K. M., Khalid, Kamil
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 3201
creator Ariff, Hajar
Kamardan, M. Ghazali
Nawawi, M. K. M.
Khalid, Kamil
description Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.
doi_str_mv 10.1063/5.0232716
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3128842580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128842580</sourcerecordid><originalsourceid>FETCH-LOGICAL-p636-92ad935a028d2418446b884530936294713800b549faf82ada0aeb4bee3b6ca63</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15jmZpRRfUHDRLlwIIdNJOykzk2mSEfz3ptjNPZvvnHs4CN0TWBCQ7EksgDJaEnmBZkQIUpSSyEs0A6h4QTn7ukY3MR4AaFWWaoa-1777ccMeG9yb1Np83NZ0uPeN7XBqg5_2LV62rlgfJxNsg5ONCfsBHyc7nYxj8HVne-wGvLeDDdnc-ji6ZLpbdLUzXbR3Z52jzevLZvlerD7fPpbPq2KUTBYVNU3FhAGqGsqJ4lzWSnHBoGKSVrwkTAHUglc7s1MZNmBszWtrWS23RrI5eviPzVVyq5j0wU9hyB81IzRHUaEgU4__VNzmbsn5QY_B9Sb8agL6NJ4W-jwe-wPVo2C4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3128842580</pqid></control><display><type>conference_proceeding</type><title>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</title><source>AIP Journals Complete</source><creator>Ariff, Hajar ; Kamardan, M. Ghazali ; Nawawi, M. K. M. ; Khalid, Kamil</creator><contributor>Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</contributor><creatorcontrib>Ariff, Hajar ; Kamardan, M. Ghazali ; Nawawi, M. K. M. ; Khalid, Kamil ; Ernanto, Iwan ; Purisha, Zenith ; Susyanto, Nanang ; Tantrawan, Made ; Susanti, Yeni</creatorcontrib><description>Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0232716</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chi-square test ; Health care ; Pattern analysis ; Probability distribution functions ; Queueing ; Simulation models ; Statistical tests</subject><ispartof>AIP conference proceedings, 2024, Vol.3201 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0232716$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76126</link.rule.ids></links><search><contributor>Ernanto, Iwan</contributor><contributor>Purisha, Zenith</contributor><contributor>Susyanto, Nanang</contributor><contributor>Tantrawan, Made</contributor><contributor>Susanti, Yeni</contributor><creatorcontrib>Ariff, Hajar</creatorcontrib><creatorcontrib>Kamardan, M. Ghazali</creatorcontrib><creatorcontrib>Nawawi, M. K. M.</creatorcontrib><creatorcontrib>Khalid, Kamil</creatorcontrib><title>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</title><title>AIP conference proceedings</title><description>Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.</description><subject>Chi-square test</subject><subject>Health care</subject><subject>Pattern analysis</subject><subject>Probability distribution functions</subject><subject>Queueing</subject><subject>Simulation models</subject><subject>Statistical tests</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTD15jmZpRRfUHDRLlwIIdNJOykzk2mSEfz3ptjNPZvvnHs4CN0TWBCQ7EksgDJaEnmBZkQIUpSSyEs0A6h4QTn7ukY3MR4AaFWWaoa-1777ccMeG9yb1Np83NZ0uPeN7XBqg5_2LV62rlgfJxNsg5ONCfsBHyc7nYxj8HVne-wGvLeDDdnc-ji6ZLpbdLUzXbR3Z52jzevLZvlerD7fPpbPq2KUTBYVNU3FhAGqGsqJ4lzWSnHBoGKSVrwkTAHUglc7s1MZNmBszWtrWS23RrI5eviPzVVyq5j0wU9hyB81IzRHUaEgU4__VNzmbsn5QY_B9Sb8agL6NJ4W-jwe-wPVo2C4</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Ariff, Hajar</creator><creator>Kamardan, M. Ghazali</creator><creator>Nawawi, M. K. M.</creator><creator>Khalid, Kamil</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241115</creationdate><title>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</title><author>Ariff, Hajar ; Kamardan, M. Ghazali ; Nawawi, M. K. M. ; Khalid, Kamil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p636-92ad935a028d2418446b884530936294713800b549faf82ada0aeb4bee3b6ca63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chi-square test</topic><topic>Health care</topic><topic>Pattern analysis</topic><topic>Probability distribution functions</topic><topic>Queueing</topic><topic>Simulation models</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ariff, Hajar</creatorcontrib><creatorcontrib>Kamardan, M. Ghazali</creatorcontrib><creatorcontrib>Nawawi, M. K. M.</creatorcontrib><creatorcontrib>Khalid, Kamil</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ariff, Hajar</au><au>Kamardan, M. Ghazali</au><au>Nawawi, M. K. M.</au><au>Khalid, Kamil</au><au>Ernanto, Iwan</au><au>Purisha, Zenith</au><au>Susyanto, Nanang</au><au>Tantrawan, Made</au><au>Susanti, Yeni</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Solving a mathematical model through Chi-Squared test on queuing problem in general hospital</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-15</date><risdate>2024</risdate><volume>3201</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Chi-square (X2) test is a nonparametric statistical analyzing method often used in experimental work where the data consists of frequencies or ‘counts’ for construction of any simulation model and improvisation needed to be made for any queuing service. Before a Queuing analysis can be performed, it is important to understand the distribution pattern of the interarrival and the service rate. For this reason, Chi-Square testing was conducted mainly to determine whether the distributions fit the exponential distribution. This is because the arrival rate and the service rate were previously has been related to exponential distribution besides Erlang and Normal distributions. This study was conducted at a healthcare center since Queuing has been a huge problem there. The result in this study shows that both interarrival and service rate at that healthcare follow an exponential distribution.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0232716</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.3201 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3128842580
source AIP Journals Complete
subjects Chi-square test
Health care
Pattern analysis
Probability distribution functions
Queueing
Simulation models
Statistical tests
title Solving a mathematical model through Chi-Squared test on queuing problem in general hospital
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Solving%20a%20mathematical%20model%20through%20Chi-Squared%20test%20on%20queuing%20problem%20in%20general%20hospital&rft.btitle=AIP%20conference%20proceedings&rft.au=Ariff,%20Hajar&rft.date=2024-11-15&rft.volume=3201&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0232716&rft_dat=%3Cproquest_scita%3E3128842580%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128842580&rft_id=info:pmid/&rfr_iscdi=true