Generalized phase retrieval in quaternion Euclidean spaces

Recently, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses quaternionic generalized phase retrieval (QGPR) problem in quaternion Euclidean spaces ℍM$$ {\mathrm{\mathbb{H}}}^M $$. We i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-12, Vol.47 (18), p.14699-14717
Hauptverfasser: Yang, Ming, Li, Yun‐Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses quaternionic generalized phase retrieval (QGPR) problem in quaternion Euclidean spaces ℍM$$ {\mathrm{\mathbb{H}}}^M $$. We introduce the concept of QGPR which aims to reconstruct a signal f$$ f $$ in ℍM$$ {\mathrm{\mathbb{H}}}^M $$ from the quadratic measurements {fFlf∗}l=0N−1$$ {\left\{f{F}_l{f}^{\ast}\right\}}_{l=0}^{N-1} $$, where each Fl$$ {F}_l $$ is an M×M$$ M\times M $$ self‐adjoint quaternion matrix. We characterize QGPR sequences in terms of their real Jacobian matrices, prove that the set of QGPR sequences is an open set in some sense, and present some phaselift‐based sufficient conditions on QGPR which gives a method to construct QGPR sequences.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.10298