Generalized phase retrieval in quaternion Euclidean spaces
Recently, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses quaternionic generalized phase retrieval (QGPR) problem in quaternion Euclidean spaces ℍM$$ {\mathrm{\mathbb{H}}}^M $$. We i...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-12, Vol.47 (18), p.14699-14717 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, quaternionic Fourier analysis has received increasing attention due to its applications in signal analysis and image processing. This paper addresses quaternionic generalized phase retrieval (QGPR) problem in quaternion Euclidean spaces
ℍM$$ {\mathrm{\mathbb{H}}}^M $$. We introduce the concept of QGPR which aims to reconstruct a signal
f$$ f $$ in
ℍM$$ {\mathrm{\mathbb{H}}}^M $$ from the quadratic measurements
{fFlf∗}l=0N−1$$ {\left\{f{F}_l{f}^{\ast}\right\}}_{l=0}^{N-1} $$, where each
Fl$$ {F}_l $$ is an
M×M$$ M\times M $$ self‐adjoint quaternion matrix. We characterize QGPR sequences in terms of their real Jacobian matrices, prove that the set of QGPR sequences is an open set in some sense, and present some phaselift‐based sufficient conditions on QGPR which gives a method to construct QGPR sequences. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.10298 |