The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements

The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium properties but was missing hydrodynamic functions required for suspension stress and non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm to model the traceless part of the stress ten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-11, Vol.999, Article A38
Hauptverfasser: Gonzalez, Emma, Zia, Roseanna N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 999
creator Gonzalez, Emma
Zia, Roseanna N.
description The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium properties but was missing hydrodynamic functions required for suspension stress and non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm to model the traceless part of the stress tensor. To obtain quantities needed to solve the integral expressions for the stress, we developed a general method to solve Stokes’ equations in bispherical coordinates. We calculate the traceless stress tensor for arbitrary particle-to-enclosure size ratio. We next compute rheology of a confined suspension by implementing the stresslet hydrodynamic coefficients into CSD, yielding the deviatoric part of the many-body hydrodynamic stresslet. We employed energy methods to relate this stresslet to the high-frequency viscosity of the confined suspension, finding an increase in viscous dissipation with crowding and confinement well beyond the unconfined value. We show that confinement effects on viscosity are dominated by near-field interactions between the particles that reside very near the cavity wall (rather than particle–wall interactions). Surprisingly, this near-field effect is stronger than the viscosity of an unconfined suspension, showing that entropic exclusion driven by the wall sets up many lubrication interactions that then generate strong viscous dissipation. The limiting case of a particle near a flat wall reveals a correction to prior literature. The theory presented in this work can be expanded to study the Brownian contribution to the viscosity of confined suspensions in and away from equilibrium. In part 2, we report the osmotic pressure, via the trace of the stress tensor.
doi_str_mv 10.1017/jfm.2024.917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128589983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_917</cupid><sourcerecordid>3128589983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227t-f6dbbbc338814b6cc160f1eee70ab8bdc4a2b5f9143044f1bdb6ee8856bef5273</originalsourceid><addsrcrecordid>eNptkEtLxDAUhYMoOI7u_AEBt7bmpmmbLmXwBQO6GMFdSNIbp8P0YW5H8N_bYQbcuLln851z4WPsGkQKAsq7TWhTKaRKKyhP2AxUUSVlofJTNhNCygRAinN2QbQRAjJRlTP2sVoj930Xmg5rTmNEoi2OPPSR044G7KjpO-JNxy2nYY2x8XbLvf1uxp-Uv9k4ckj5KlqP26nLp9tiN9IlOwt2S3h1zDl7f3xYLZ6T5evTy-J-mXgpyzEJRe2c81mmNShXeA-FCICIpbBOu9orK10eKlCZUCqAq12BqHVeOAy5LLM5uznsDrH_2iGNZtPvYje9NBlIneuq0tlE3R4oH3uiiMEMsWlt_DEgzN6dmdyZvTszuZvw9Ijb1sWm_sS_1X8Lv65Ncgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128589983</pqid></control><display><type>article</type><title>The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements</title><source>Cambridge University Press Journals Complete</source><creator>Gonzalez, Emma ; Zia, Roseanna N.</creator><creatorcontrib>Gonzalez, Emma ; Zia, Roseanna N.</creatorcontrib><description>The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium properties but was missing hydrodynamic functions required for suspension stress and non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm to model the traceless part of the stress tensor. To obtain quantities needed to solve the integral expressions for the stress, we developed a general method to solve Stokes’ equations in bispherical coordinates. We calculate the traceless stress tensor for arbitrary particle-to-enclosure size ratio. We next compute rheology of a confined suspension by implementing the stresslet hydrodynamic coefficients into CSD, yielding the deviatoric part of the many-body hydrodynamic stresslet. We employed energy methods to relate this stresslet to the high-frequency viscosity of the confined suspension, finding an increase in viscous dissipation with crowding and confinement well beyond the unconfined value. We show that confinement effects on viscosity are dominated by near-field interactions between the particles that reside very near the cavity wall (rather than particle–wall interactions). Surprisingly, this near-field effect is stronger than the viscosity of an unconfined suspension, showing that entropic exclusion driven by the wall sets up many lubrication interactions that then generate strong viscous dissipation. The limiting case of a particle near a flat wall reveals a correction to prior literature. The theory presented in this work can be expanded to study the Brownian contribution to the viscosity of confined suspensions in and away from equilibrium. In part 2, we report the osmotic pressure, via the trace of the stress tensor.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.917</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Algorithms ; Body size ; Confinement ; Dissipation ; Energy dissipation ; Energy methods ; Equilibrium ; Fluid mechanics ; Hydrodynamic coefficients ; Hydrodynamics ; JFM Papers ; Near fields ; Osmosis ; Osmotic pressure ; Physics ; Rheological properties ; Rheology ; Stocking density ; Tensors ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2024-11, Vol.999, Article A38</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c227t-f6dbbbc338814b6cc160f1eee70ab8bdc4a2b5f9143044f1bdb6ee8856bef5273</cites><orcidid>0000-0001-5812-1217 ; 0000-0002-2763-9811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112024009170/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Gonzalez, Emma</creatorcontrib><creatorcontrib>Zia, Roseanna N.</creatorcontrib><title>The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium properties but was missing hydrodynamic functions required for suspension stress and non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm to model the traceless part of the stress tensor. To obtain quantities needed to solve the integral expressions for the stress, we developed a general method to solve Stokes’ equations in bispherical coordinates. We calculate the traceless stress tensor for arbitrary particle-to-enclosure size ratio. We next compute rheology of a confined suspension by implementing the stresslet hydrodynamic coefficients into CSD, yielding the deviatoric part of the many-body hydrodynamic stresslet. We employed energy methods to relate this stresslet to the high-frequency viscosity of the confined suspension, finding an increase in viscous dissipation with crowding and confinement well beyond the unconfined value. We show that confinement effects on viscosity are dominated by near-field interactions between the particles that reside very near the cavity wall (rather than particle–wall interactions). Surprisingly, this near-field effect is stronger than the viscosity of an unconfined suspension, showing that entropic exclusion driven by the wall sets up many lubrication interactions that then generate strong viscous dissipation. The limiting case of a particle near a flat wall reveals a correction to prior literature. The theory presented in this work can be expanded to study the Brownian contribution to the viscosity of confined suspensions in and away from equilibrium. In part 2, we report the osmotic pressure, via the trace of the stress tensor.</description><subject>Algorithms</subject><subject>Body size</subject><subject>Confinement</subject><subject>Dissipation</subject><subject>Energy dissipation</subject><subject>Energy methods</subject><subject>Equilibrium</subject><subject>Fluid mechanics</subject><subject>Hydrodynamic coefficients</subject><subject>Hydrodynamics</subject><subject>JFM Papers</subject><subject>Near fields</subject><subject>Osmosis</subject><subject>Osmotic pressure</subject><subject>Physics</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Stocking density</subject><subject>Tensors</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkEtLxDAUhYMoOI7u_AEBt7bmpmmbLmXwBQO6GMFdSNIbp8P0YW5H8N_bYQbcuLln851z4WPsGkQKAsq7TWhTKaRKKyhP2AxUUSVlofJTNhNCygRAinN2QbQRAjJRlTP2sVoj930Xmg5rTmNEoi2OPPSR044G7KjpO-JNxy2nYY2x8XbLvf1uxp-Uv9k4ckj5KlqP26nLp9tiN9IlOwt2S3h1zDl7f3xYLZ6T5evTy-J-mXgpyzEJRe2c81mmNShXeA-FCICIpbBOu9orK10eKlCZUCqAq12BqHVeOAy5LLM5uznsDrH_2iGNZtPvYje9NBlIneuq0tlE3R4oH3uiiMEMsWlt_DEgzN6dmdyZvTszuZvw9Ijb1sWm_sS_1X8Lv65Ncgg</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Gonzalez, Emma</creator><creator>Zia, Roseanna N.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5812-1217</orcidid><orcidid>https://orcid.org/0000-0002-2763-9811</orcidid></search><sort><creationdate>20241114</creationdate><title>The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements</title><author>Gonzalez, Emma ; Zia, Roseanna N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227t-f6dbbbc338814b6cc160f1eee70ab8bdc4a2b5f9143044f1bdb6ee8856bef5273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Body size</topic><topic>Confinement</topic><topic>Dissipation</topic><topic>Energy dissipation</topic><topic>Energy methods</topic><topic>Equilibrium</topic><topic>Fluid mechanics</topic><topic>Hydrodynamic coefficients</topic><topic>Hydrodynamics</topic><topic>JFM Papers</topic><topic>Near fields</topic><topic>Osmosis</topic><topic>Osmotic pressure</topic><topic>Physics</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Stocking density</topic><topic>Tensors</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Emma</creatorcontrib><creatorcontrib>Zia, Roseanna N.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Emma</au><au>Zia, Roseanna N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-11-14</date><risdate>2024</risdate><volume>999</volume><artnum>A38</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The confined Stokesian dynamics (CSD) algorithm recently reported equilibrium properties but was missing hydrodynamic functions required for suspension stress and non-equilibrium properties. In this first of a two-part series, we expand the CSD algorithm to model the traceless part of the stress tensor. To obtain quantities needed to solve the integral expressions for the stress, we developed a general method to solve Stokes’ equations in bispherical coordinates. We calculate the traceless stress tensor for arbitrary particle-to-enclosure size ratio. We next compute rheology of a confined suspension by implementing the stresslet hydrodynamic coefficients into CSD, yielding the deviatoric part of the many-body hydrodynamic stresslet. We employed energy methods to relate this stresslet to the high-frequency viscosity of the confined suspension, finding an increase in viscous dissipation with crowding and confinement well beyond the unconfined value. We show that confinement effects on viscosity are dominated by near-field interactions between the particles that reside very near the cavity wall (rather than particle–wall interactions). Surprisingly, this near-field effect is stronger than the viscosity of an unconfined suspension, showing that entropic exclusion driven by the wall sets up many lubrication interactions that then generate strong viscous dissipation. The limiting case of a particle near a flat wall reveals a correction to prior literature. The theory presented in this work can be expanded to study the Brownian contribution to the viscosity of confined suspensions in and away from equilibrium. In part 2, we report the osmotic pressure, via the trace of the stress tensor.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.917</doi><tpages>70</tpages><orcidid>https://orcid.org/0000-0001-5812-1217</orcidid><orcidid>https://orcid.org/0000-0002-2763-9811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-11, Vol.999, Article A38
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_3128589983
source Cambridge University Press Journals Complete
subjects Algorithms
Body size
Confinement
Dissipation
Energy dissipation
Energy methods
Equilibrium
Fluid mechanics
Hydrodynamic coefficients
Hydrodynamics
JFM Papers
Near fields
Osmosis
Osmotic pressure
Physics
Rheological properties
Rheology
Stocking density
Tensors
Viscosity
title The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20confined%20stresslet%20for%20suspensions%20in%20a%20spherical%20cavity.%20Part%201.%20Traceless%20elements&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gonzalez,%20Emma&rft.date=2024-11-14&rft.volume=999&rft.artnum=A38&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.917&rft_dat=%3Cproquest_cross%3E3128589983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128589983&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_917&rfr_iscdi=true