Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations
The integration of machine learning techniques into Inertial Confinement Fusion (ICF) simulations has emerged as a powerful approach for enhancing computational efficiency. By replacing the costly Non-Local Thermodynamic Equilibrium (NLTE) model with machine learning models, significant reductions i...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cho, Min Sang Grabowski, Paul E Thopalli, Kowshik Jayram, Thathachar S Barrow, Michael J Thiagarajan, Jayaraman J Rushil Anirudh Le, Hai P Scott, Howard A Kallman, Joshua B Stephens, Branson C Foord, Mark E Gaffney, Jim A Bremer, Peer-Timo |
description | The integration of machine learning techniques into Inertial Confinement Fusion (ICF) simulations has emerged as a powerful approach for enhancing computational efficiency. By replacing the costly Non-Local Thermodynamic Equilibrium (NLTE) model with machine learning models, significant reductions in calculation time have been achieved. However, determining how to optimize machine learning-based NLTE models in order to match ICF simulation dynamics remains challenging, underscoring the need for physically relevant error metrics and strategies to enhance model accuracy with respect to these metrics. Thus, we propose novel physics-informed transformations designed to emphasize energy transport, use these transformations to establish new error metrics, and demonstrate that they yield smaller errors within reduced principal component spaces compared to conventional transformations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3128429480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128429480</sourcerecordid><originalsourceid>FETCH-proquest_journals_31284294803</originalsourceid><addsrcrecordid>eNqNjsEKgkAYhJcgSMp3-KGzoLtadhYlQSPIuyy65oru1v5a9PZZ9ACdZmBmPmZBLMqY54Q-pStiI3au69LdngYBs0h1bl8oK3RS1WgziBoKwxV-PB-lVlDoJzc1pMPN6IdUVxhbATmvWqmEkwlu1Lw5ZUUMua5Fj6AbSKMELnKY-i8CN2TZ8B6F_dM12SZxER2dGXmfBI5lpyej5qhkHp1_HvzQZf-13q7dRXU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128429480</pqid></control><display><type>article</type><title>Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations</title><source>Free E- Journals</source><creator>Cho, Min Sang ; Grabowski, Paul E ; Thopalli, Kowshik ; Jayram, Thathachar S ; Barrow, Michael J ; Thiagarajan, Jayaraman J ; Rushil Anirudh ; Le, Hai P ; Scott, Howard A ; Kallman, Joshua B ; Stephens, Branson C ; Foord, Mark E ; Gaffney, Jim A ; Bremer, Peer-Timo</creator><creatorcontrib>Cho, Min Sang ; Grabowski, Paul E ; Thopalli, Kowshik ; Jayram, Thathachar S ; Barrow, Michael J ; Thiagarajan, Jayaraman J ; Rushil Anirudh ; Le, Hai P ; Scott, Howard A ; Kallman, Joshua B ; Stephens, Branson C ; Foord, Mark E ; Gaffney, Jim A ; Bremer, Peer-Timo</creatorcontrib><description>The integration of machine learning techniques into Inertial Confinement Fusion (ICF) simulations has emerged as a powerful approach for enhancing computational efficiency. By replacing the costly Non-Local Thermodynamic Equilibrium (NLTE) model with machine learning models, significant reductions in calculation time have been achieved. However, determining how to optimize machine learning-based NLTE models in order to match ICF simulation dynamics remains challenging, underscoring the need for physically relevant error metrics and strategies to enhance model accuracy with respect to these metrics. Thus, we propose novel physics-informed transformations designed to emphasize energy transport, use these transformations to establish new error metrics, and demonstrate that they yield smaller errors within reduced principal component spaces compared to conventional transformations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inertial confinement fusion ; Local thermodynamic equilibrium ; Machine learning</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Cho, Min Sang</creatorcontrib><creatorcontrib>Grabowski, Paul E</creatorcontrib><creatorcontrib>Thopalli, Kowshik</creatorcontrib><creatorcontrib>Jayram, Thathachar S</creatorcontrib><creatorcontrib>Barrow, Michael J</creatorcontrib><creatorcontrib>Thiagarajan, Jayaraman J</creatorcontrib><creatorcontrib>Rushil Anirudh</creatorcontrib><creatorcontrib>Le, Hai P</creatorcontrib><creatorcontrib>Scott, Howard A</creatorcontrib><creatorcontrib>Kallman, Joshua B</creatorcontrib><creatorcontrib>Stephens, Branson C</creatorcontrib><creatorcontrib>Foord, Mark E</creatorcontrib><creatorcontrib>Gaffney, Jim A</creatorcontrib><creatorcontrib>Bremer, Peer-Timo</creatorcontrib><title>Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations</title><title>arXiv.org</title><description>The integration of machine learning techniques into Inertial Confinement Fusion (ICF) simulations has emerged as a powerful approach for enhancing computational efficiency. By replacing the costly Non-Local Thermodynamic Equilibrium (NLTE) model with machine learning models, significant reductions in calculation time have been achieved. However, determining how to optimize machine learning-based NLTE models in order to match ICF simulation dynamics remains challenging, underscoring the need for physically relevant error metrics and strategies to enhance model accuracy with respect to these metrics. Thus, we propose novel physics-informed transformations designed to emphasize energy transport, use these transformations to establish new error metrics, and demonstrate that they yield smaller errors within reduced principal component spaces compared to conventional transformations.</description><subject>Inertial confinement fusion</subject><subject>Local thermodynamic equilibrium</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsEKgkAYhJcgSMp3-KGzoLtadhYlQSPIuyy65oru1v5a9PZZ9ACdZmBmPmZBLMqY54Q-pStiI3au69LdngYBs0h1bl8oK3RS1WgziBoKwxV-PB-lVlDoJzc1pMPN6IdUVxhbATmvWqmEkwlu1Lw5ZUUMua5Fj6AbSKMELnKY-i8CN2TZ8B6F_dM12SZxER2dGXmfBI5lpyej5qhkHp1_HvzQZf-13q7dRXU</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Cho, Min Sang</creator><creator>Grabowski, Paul E</creator><creator>Thopalli, Kowshik</creator><creator>Jayram, Thathachar S</creator><creator>Barrow, Michael J</creator><creator>Thiagarajan, Jayaraman J</creator><creator>Rushil Anirudh</creator><creator>Le, Hai P</creator><creator>Scott, Howard A</creator><creator>Kallman, Joshua B</creator><creator>Stephens, Branson C</creator><creator>Foord, Mark E</creator><creator>Gaffney, Jim A</creator><creator>Bremer, Peer-Timo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241113</creationdate><title>Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations</title><author>Cho, Min Sang ; Grabowski, Paul E ; Thopalli, Kowshik ; Jayram, Thathachar S ; Barrow, Michael J ; Thiagarajan, Jayaraman J ; Rushil Anirudh ; Le, Hai P ; Scott, Howard A ; Kallman, Joshua B ; Stephens, Branson C ; Foord, Mark E ; Gaffney, Jim A ; Bremer, Peer-Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31284294803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Inertial confinement fusion</topic><topic>Local thermodynamic equilibrium</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Min Sang</creatorcontrib><creatorcontrib>Grabowski, Paul E</creatorcontrib><creatorcontrib>Thopalli, Kowshik</creatorcontrib><creatorcontrib>Jayram, Thathachar S</creatorcontrib><creatorcontrib>Barrow, Michael J</creatorcontrib><creatorcontrib>Thiagarajan, Jayaraman J</creatorcontrib><creatorcontrib>Rushil Anirudh</creatorcontrib><creatorcontrib>Le, Hai P</creatorcontrib><creatorcontrib>Scott, Howard A</creatorcontrib><creatorcontrib>Kallman, Joshua B</creatorcontrib><creatorcontrib>Stephens, Branson C</creatorcontrib><creatorcontrib>Foord, Mark E</creatorcontrib><creatorcontrib>Gaffney, Jim A</creatorcontrib><creatorcontrib>Bremer, Peer-Timo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Min Sang</au><au>Grabowski, Paul E</au><au>Thopalli, Kowshik</au><au>Jayram, Thathachar S</au><au>Barrow, Michael J</au><au>Thiagarajan, Jayaraman J</au><au>Rushil Anirudh</au><au>Le, Hai P</au><au>Scott, Howard A</au><au>Kallman, Joshua B</au><au>Stephens, Branson C</au><au>Foord, Mark E</au><au>Gaffney, Jim A</au><au>Bremer, Peer-Timo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations</atitle><jtitle>arXiv.org</jtitle><date>2024-11-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The integration of machine learning techniques into Inertial Confinement Fusion (ICF) simulations has emerged as a powerful approach for enhancing computational efficiency. By replacing the costly Non-Local Thermodynamic Equilibrium (NLTE) model with machine learning models, significant reductions in calculation time have been achieved. However, determining how to optimize machine learning-based NLTE models in order to match ICF simulation dynamics remains challenging, underscoring the need for physically relevant error metrics and strategies to enhance model accuracy with respect to these metrics. Thus, we propose novel physics-informed transformations designed to emphasize energy transport, use these transformations to establish new error metrics, and demonstrate that they yield smaller errors within reduced principal component spaces compared to conventional transformations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3128429480 |
source | Free E- Journals |
subjects | Inertial confinement fusion Local thermodynamic equilibrium Machine learning |
title | Physics-Informed Transformation Toward Improving the Machine-Learned NLTE Models of ICF Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Physics-Informed%20Transformation%20Toward%20Improving%20the%20Machine-Learned%20NLTE%20Models%20of%20ICF%20Simulations&rft.jtitle=arXiv.org&rft.au=Cho,%20Min%20Sang&rft.date=2024-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3128429480%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128429480&rft_id=info:pmid/&rfr_iscdi=true |