The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models
ABSTRACT Aim Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal ba...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2024-12, Vol.33 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Global ecology and biogeography |
container_volume | 33 |
creator | Oeser, Julian Zurell, Damaris Mayer, Frieder Çoraman, Emrah Toshkova, Nia Deleva, Stanimira Natradze, Ioseb Benda, Petr Ghazaryan, Astghik Irmak, Sercan Hasanov, Nijat Guliyeva, Gulnar Gritsina, Mariya Kuemmerle, Tobias |
description | ABSTRACT
Aim
Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.
Innovation
Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.
Main Conclusions
Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling. |
doi_str_mv | 10.1111/geb.13911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128424308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128424308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2551-6a1c6f5bd02fd881f52fe1f57ec93a7e7e3361914912fafb201c85d7885def43</originalsourceid><addsrcrecordid>eNp10UFPwjAUB_DGaCKiB79BEy96GKzdOoo3QUQSiInM6G3ptlcsjnW2m8i38bP4yaxgPJjYw2vT_N5Lmz9Cp8TvELe6C0g7JOgTsodaJIwij9OA7_-e6dMhOrJ26fs-C1nUQm_xM-AB2BprieO1xo_aFLm9xA9WlQs8r0X2AjkeQwlGFMqKWukSS20-PyZlDQvjLpwbvVdganwvygXgmagsViWeV5ApsPha2dqotNm2znQOhT1GB1IUFk5-9jaKb0bx8Nab3o0nw6upl1HGiBcJkkWSpblPZc45kYxKcLUHWT8QPehBEESkT8I-oVLIlPok4yzvcVdAhkEbne_GVka_Nu6XyUrZDIpClKAbmwSEhSRiPIwcPftDl7oxpXucU5SHNAx87tTFTmVGW2tAJpVRK2E2CfGT7wASF0CyDcDZ7s6uVQGb_2EyHg12HV87q4gC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128424308</pqid></control><display><type>article</type><title>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</title><source>Wiley Online Library</source><creator>Oeser, Julian ; Zurell, Damaris ; Mayer, Frieder ; Çoraman, Emrah ; Toshkova, Nia ; Deleva, Stanimira ; Natradze, Ioseb ; Benda, Petr ; Ghazaryan, Astghik ; Irmak, Sercan ; Hasanov, Nijat ; Guliyeva, Gulnar ; Gritsina, Mariya ; Kuemmerle, Tobias</creator><creatorcontrib>Oeser, Julian ; Zurell, Damaris ; Mayer, Frieder ; Çoraman, Emrah ; Toshkova, Nia ; Deleva, Stanimira ; Natradze, Ioseb ; Benda, Petr ; Ghazaryan, Astghik ; Irmak, Sercan ; Hasanov, Nijat ; Guliyeva, Gulnar ; Gritsina, Mariya ; Kuemmerle, Tobias</creatorcontrib><description>ABSTRACT
Aim
Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.
Innovation
Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.
Main Conclusions
Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13911</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; biodiversity ; Biodiversity hot spots ; biogeography ; Central Asia ; Chiroptera ; data collection ; Distribution patterns ; ensemble ; expert range map ; Geographical distribution ; Information processing ; meta‐learner ; Modelling ; range limit ; realised distribution ; regression analysis ; Regression models ; SDM ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Species ; species distribution modelling ; stacked generalisation ; stacking ; super learner ; Training ; uncertainty ; West Asia</subject><ispartof>Global ecology and biogeography, 2024-12, Vol.33 (12), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2551-6a1c6f5bd02fd881f52fe1f57ec93a7e7e3361914912fafb201c85d7885def43</cites><orcidid>0000-0003-3216-6817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13911$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13911$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Oeser, Julian</creatorcontrib><creatorcontrib>Zurell, Damaris</creatorcontrib><creatorcontrib>Mayer, Frieder</creatorcontrib><creatorcontrib>Çoraman, Emrah</creatorcontrib><creatorcontrib>Toshkova, Nia</creatorcontrib><creatorcontrib>Deleva, Stanimira</creatorcontrib><creatorcontrib>Natradze, Ioseb</creatorcontrib><creatorcontrib>Benda, Petr</creatorcontrib><creatorcontrib>Ghazaryan, Astghik</creatorcontrib><creatorcontrib>Irmak, Sercan</creatorcontrib><creatorcontrib>Hasanov, Nijat</creatorcontrib><creatorcontrib>Guliyeva, Gulnar</creatorcontrib><creatorcontrib>Gritsina, Mariya</creatorcontrib><creatorcontrib>Kuemmerle, Tobias</creatorcontrib><title>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</title><title>Global ecology and biogeography</title><description>ABSTRACT
Aim
Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.
Innovation
Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.
Main Conclusions
Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</description><subject>Algorithms</subject><subject>biodiversity</subject><subject>Biodiversity hot spots</subject><subject>biogeography</subject><subject>Central Asia</subject><subject>Chiroptera</subject><subject>data collection</subject><subject>Distribution patterns</subject><subject>ensemble</subject><subject>expert range map</subject><subject>Geographical distribution</subject><subject>Information processing</subject><subject>meta‐learner</subject><subject>Modelling</subject><subject>range limit</subject><subject>realised distribution</subject><subject>regression analysis</subject><subject>Regression models</subject><subject>SDM</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Species</subject><subject>species distribution modelling</subject><subject>stacked generalisation</subject><subject>stacking</subject><subject>super learner</subject><subject>Training</subject><subject>uncertainty</subject><subject>West Asia</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10UFPwjAUB_DGaCKiB79BEy96GKzdOoo3QUQSiInM6G3ptlcsjnW2m8i38bP4yaxgPJjYw2vT_N5Lmz9Cp8TvELe6C0g7JOgTsodaJIwij9OA7_-e6dMhOrJ26fs-C1nUQm_xM-AB2BprieO1xo_aFLm9xA9WlQs8r0X2AjkeQwlGFMqKWukSS20-PyZlDQvjLpwbvVdganwvygXgmagsViWeV5ApsPha2dqotNm2znQOhT1GB1IUFk5-9jaKb0bx8Nab3o0nw6upl1HGiBcJkkWSpblPZc45kYxKcLUHWT8QPehBEESkT8I-oVLIlPok4yzvcVdAhkEbne_GVka_Nu6XyUrZDIpClKAbmwSEhSRiPIwcPftDl7oxpXucU5SHNAx87tTFTmVGW2tAJpVRK2E2CfGT7wASF0CyDcDZ7s6uVQGb_2EyHg12HV87q4gC</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Oeser, Julian</creator><creator>Zurell, Damaris</creator><creator>Mayer, Frieder</creator><creator>Çoraman, Emrah</creator><creator>Toshkova, Nia</creator><creator>Deleva, Stanimira</creator><creator>Natradze, Ioseb</creator><creator>Benda, Petr</creator><creator>Ghazaryan, Astghik</creator><creator>Irmak, Sercan</creator><creator>Hasanov, Nijat</creator><creator>Guliyeva, Gulnar</creator><creator>Gritsina, Mariya</creator><creator>Kuemmerle, Tobias</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3216-6817</orcidid></search><sort><creationdate>202412</creationdate><title>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</title><author>Oeser, Julian ; Zurell, Damaris ; Mayer, Frieder ; Çoraman, Emrah ; Toshkova, Nia ; Deleva, Stanimira ; Natradze, Ioseb ; Benda, Petr ; Ghazaryan, Astghik ; Irmak, Sercan ; Hasanov, Nijat ; Guliyeva, Gulnar ; Gritsina, Mariya ; Kuemmerle, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2551-6a1c6f5bd02fd881f52fe1f57ec93a7e7e3361914912fafb201c85d7885def43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>biodiversity</topic><topic>Biodiversity hot spots</topic><topic>biogeography</topic><topic>Central Asia</topic><topic>Chiroptera</topic><topic>data collection</topic><topic>Distribution patterns</topic><topic>ensemble</topic><topic>expert range map</topic><topic>Geographical distribution</topic><topic>Information processing</topic><topic>meta‐learner</topic><topic>Modelling</topic><topic>range limit</topic><topic>realised distribution</topic><topic>regression analysis</topic><topic>Regression models</topic><topic>SDM</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Species</topic><topic>species distribution modelling</topic><topic>stacked generalisation</topic><topic>stacking</topic><topic>super learner</topic><topic>Training</topic><topic>uncertainty</topic><topic>West Asia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oeser, Julian</creatorcontrib><creatorcontrib>Zurell, Damaris</creatorcontrib><creatorcontrib>Mayer, Frieder</creatorcontrib><creatorcontrib>Çoraman, Emrah</creatorcontrib><creatorcontrib>Toshkova, Nia</creatorcontrib><creatorcontrib>Deleva, Stanimira</creatorcontrib><creatorcontrib>Natradze, Ioseb</creatorcontrib><creatorcontrib>Benda, Petr</creatorcontrib><creatorcontrib>Ghazaryan, Astghik</creatorcontrib><creatorcontrib>Irmak, Sercan</creatorcontrib><creatorcontrib>Hasanov, Nijat</creatorcontrib><creatorcontrib>Guliyeva, Gulnar</creatorcontrib><creatorcontrib>Gritsina, Mariya</creatorcontrib><creatorcontrib>Kuemmerle, Tobias</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oeser, Julian</au><au>Zurell, Damaris</au><au>Mayer, Frieder</au><au>Çoraman, Emrah</au><au>Toshkova, Nia</au><au>Deleva, Stanimira</au><au>Natradze, Ioseb</au><au>Benda, Petr</au><au>Ghazaryan, Astghik</au><au>Irmak, Sercan</au><au>Hasanov, Nijat</au><au>Guliyeva, Gulnar</au><au>Gritsina, Mariya</au><au>Kuemmerle, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</atitle><jtitle>Global ecology and biogeography</jtitle><date>2024-12</date><risdate>2024</risdate><volume>33</volume><issue>12</issue><epage>n/a</epage><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>ABSTRACT
Aim
Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs.
Innovation
Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia.
Main Conclusions
Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13911</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3216-6817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2024-12, Vol.33 (12), p.n/a |
issn | 1466-822X 1466-8238 |
language | eng |
recordid | cdi_proquest_journals_3128424308 |
source | Wiley Online Library |
subjects | Algorithms biodiversity Biodiversity hot spots biogeography Central Asia Chiroptera data collection Distribution patterns ensemble expert range map Geographical distribution Information processing meta‐learner Modelling range limit realised distribution regression analysis Regression models SDM Spatial discrimination Spatial distribution Spatial resolution Species species distribution modelling stacked generalisation stacking super learner Training uncertainty West Asia |
title | The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Best%20of%20Two%20Worlds:%20Using%20Stacked%20Generalisation%20for%C2%A0Integrating%20Expert%20Range%20Maps%20in%20Species%20Distribution%20Models&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Oeser,%20Julian&rft.date=2024-12&rft.volume=33&rft.issue=12&rft.epage=n/a&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13911&rft_dat=%3Cproquest_cross%3E3128424308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128424308&rft_id=info:pmid/&rfr_iscdi=true |