The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models

ABSTRACT Aim Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2024-12, Vol.33 (12), p.n/a
Hauptverfasser: Oeser, Julian, Zurell, Damaris, Mayer, Frieder, Çoraman, Emrah, Toshkova, Nia, Deleva, Stanimira, Natradze, Ioseb, Benda, Petr, Ghazaryan, Astghik, Irmak, Sercan, Hasanov, Nijat, Guliyeva, Gulnar, Gritsina, Mariya, Kuemmerle, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Global ecology and biogeography
container_volume 33
creator Oeser, Julian
Zurell, Damaris
Mayer, Frieder
Çoraman, Emrah
Toshkova, Nia
Deleva, Stanimira
Natradze, Ioseb
Benda, Petr
Ghazaryan, Astghik
Irmak, Sercan
Hasanov, Nijat
Guliyeva, Gulnar
Gritsina, Mariya
Kuemmerle, Tobias
description ABSTRACT Aim Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs. Innovation Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia. Main Conclusions Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.
doi_str_mv 10.1111/geb.13911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128424308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128424308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2551-6a1c6f5bd02fd881f52fe1f57ec93a7e7e3361914912fafb201c85d7885def43</originalsourceid><addsrcrecordid>eNp10UFPwjAUB_DGaCKiB79BEy96GKzdOoo3QUQSiInM6G3ptlcsjnW2m8i38bP4yaxgPJjYw2vT_N5Lmz9Cp8TvELe6C0g7JOgTsodaJIwij9OA7_-e6dMhOrJ26fs-C1nUQm_xM-AB2BprieO1xo_aFLm9xA9WlQs8r0X2AjkeQwlGFMqKWukSS20-PyZlDQvjLpwbvVdganwvygXgmagsViWeV5ApsPha2dqotNm2znQOhT1GB1IUFk5-9jaKb0bx8Nab3o0nw6upl1HGiBcJkkWSpblPZc45kYxKcLUHWT8QPehBEESkT8I-oVLIlPok4yzvcVdAhkEbne_GVka_Nu6XyUrZDIpClKAbmwSEhSRiPIwcPftDl7oxpXucU5SHNAx87tTFTmVGW2tAJpVRK2E2CfGT7wASF0CyDcDZ7s6uVQGb_2EyHg12HV87q4gC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128424308</pqid></control><display><type>article</type><title>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</title><source>Wiley Online Library</source><creator>Oeser, Julian ; Zurell, Damaris ; Mayer, Frieder ; Çoraman, Emrah ; Toshkova, Nia ; Deleva, Stanimira ; Natradze, Ioseb ; Benda, Petr ; Ghazaryan, Astghik ; Irmak, Sercan ; Hasanov, Nijat ; Guliyeva, Gulnar ; Gritsina, Mariya ; Kuemmerle, Tobias</creator><creatorcontrib>Oeser, Julian ; Zurell, Damaris ; Mayer, Frieder ; Çoraman, Emrah ; Toshkova, Nia ; Deleva, Stanimira ; Natradze, Ioseb ; Benda, Petr ; Ghazaryan, Astghik ; Irmak, Sercan ; Hasanov, Nijat ; Guliyeva, Gulnar ; Gritsina, Mariya ; Kuemmerle, Tobias</creatorcontrib><description>ABSTRACT Aim Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs. Innovation Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia. Main Conclusions Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13911</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; biodiversity ; Biodiversity hot spots ; biogeography ; Central Asia ; Chiroptera ; data collection ; Distribution patterns ; ensemble ; expert range map ; Geographical distribution ; Information processing ; meta‐learner ; Modelling ; range limit ; realised distribution ; regression analysis ; Regression models ; SDM ; Spatial discrimination ; Spatial distribution ; Spatial resolution ; Species ; species distribution modelling ; stacked generalisation ; stacking ; super learner ; Training ; uncertainty ; West Asia</subject><ispartof>Global ecology and biogeography, 2024-12, Vol.33 (12), p.n/a</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2551-6a1c6f5bd02fd881f52fe1f57ec93a7e7e3361914912fafb201c85d7885def43</cites><orcidid>0000-0003-3216-6817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13911$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13911$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Oeser, Julian</creatorcontrib><creatorcontrib>Zurell, Damaris</creatorcontrib><creatorcontrib>Mayer, Frieder</creatorcontrib><creatorcontrib>Çoraman, Emrah</creatorcontrib><creatorcontrib>Toshkova, Nia</creatorcontrib><creatorcontrib>Deleva, Stanimira</creatorcontrib><creatorcontrib>Natradze, Ioseb</creatorcontrib><creatorcontrib>Benda, Petr</creatorcontrib><creatorcontrib>Ghazaryan, Astghik</creatorcontrib><creatorcontrib>Irmak, Sercan</creatorcontrib><creatorcontrib>Hasanov, Nijat</creatorcontrib><creatorcontrib>Guliyeva, Gulnar</creatorcontrib><creatorcontrib>Gritsina, Mariya</creatorcontrib><creatorcontrib>Kuemmerle, Tobias</creatorcontrib><title>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</title><title>Global ecology and biogeography</title><description>ABSTRACT Aim Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs. Innovation Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia. Main Conclusions Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</description><subject>Algorithms</subject><subject>biodiversity</subject><subject>Biodiversity hot spots</subject><subject>biogeography</subject><subject>Central Asia</subject><subject>Chiroptera</subject><subject>data collection</subject><subject>Distribution patterns</subject><subject>ensemble</subject><subject>expert range map</subject><subject>Geographical distribution</subject><subject>Information processing</subject><subject>meta‐learner</subject><subject>Modelling</subject><subject>range limit</subject><subject>realised distribution</subject><subject>regression analysis</subject><subject>Regression models</subject><subject>SDM</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Species</subject><subject>species distribution modelling</subject><subject>stacked generalisation</subject><subject>stacking</subject><subject>super learner</subject><subject>Training</subject><subject>uncertainty</subject><subject>West Asia</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10UFPwjAUB_DGaCKiB79BEy96GKzdOoo3QUQSiInM6G3ptlcsjnW2m8i38bP4yaxgPJjYw2vT_N5Lmz9Cp8TvELe6C0g7JOgTsodaJIwij9OA7_-e6dMhOrJ26fs-C1nUQm_xM-AB2BprieO1xo_aFLm9xA9WlQs8r0X2AjkeQwlGFMqKWukSS20-PyZlDQvjLpwbvVdganwvygXgmagsViWeV5ApsPha2dqotNm2znQOhT1GB1IUFk5-9jaKb0bx8Nab3o0nw6upl1HGiBcJkkWSpblPZc45kYxKcLUHWT8QPehBEESkT8I-oVLIlPok4yzvcVdAhkEbne_GVka_Nu6XyUrZDIpClKAbmwSEhSRiPIwcPftDl7oxpXucU5SHNAx87tTFTmVGW2tAJpVRK2E2CfGT7wASF0CyDcDZ7s6uVQGb_2EyHg12HV87q4gC</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Oeser, Julian</creator><creator>Zurell, Damaris</creator><creator>Mayer, Frieder</creator><creator>Çoraman, Emrah</creator><creator>Toshkova, Nia</creator><creator>Deleva, Stanimira</creator><creator>Natradze, Ioseb</creator><creator>Benda, Petr</creator><creator>Ghazaryan, Astghik</creator><creator>Irmak, Sercan</creator><creator>Hasanov, Nijat</creator><creator>Guliyeva, Gulnar</creator><creator>Gritsina, Mariya</creator><creator>Kuemmerle, Tobias</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3216-6817</orcidid></search><sort><creationdate>202412</creationdate><title>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</title><author>Oeser, Julian ; Zurell, Damaris ; Mayer, Frieder ; Çoraman, Emrah ; Toshkova, Nia ; Deleva, Stanimira ; Natradze, Ioseb ; Benda, Petr ; Ghazaryan, Astghik ; Irmak, Sercan ; Hasanov, Nijat ; Guliyeva, Gulnar ; Gritsina, Mariya ; Kuemmerle, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2551-6a1c6f5bd02fd881f52fe1f57ec93a7e7e3361914912fafb201c85d7885def43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>biodiversity</topic><topic>Biodiversity hot spots</topic><topic>biogeography</topic><topic>Central Asia</topic><topic>Chiroptera</topic><topic>data collection</topic><topic>Distribution patterns</topic><topic>ensemble</topic><topic>expert range map</topic><topic>Geographical distribution</topic><topic>Information processing</topic><topic>meta‐learner</topic><topic>Modelling</topic><topic>range limit</topic><topic>realised distribution</topic><topic>regression analysis</topic><topic>Regression models</topic><topic>SDM</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Species</topic><topic>species distribution modelling</topic><topic>stacked generalisation</topic><topic>stacking</topic><topic>super learner</topic><topic>Training</topic><topic>uncertainty</topic><topic>West Asia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oeser, Julian</creatorcontrib><creatorcontrib>Zurell, Damaris</creatorcontrib><creatorcontrib>Mayer, Frieder</creatorcontrib><creatorcontrib>Çoraman, Emrah</creatorcontrib><creatorcontrib>Toshkova, Nia</creatorcontrib><creatorcontrib>Deleva, Stanimira</creatorcontrib><creatorcontrib>Natradze, Ioseb</creatorcontrib><creatorcontrib>Benda, Petr</creatorcontrib><creatorcontrib>Ghazaryan, Astghik</creatorcontrib><creatorcontrib>Irmak, Sercan</creatorcontrib><creatorcontrib>Hasanov, Nijat</creatorcontrib><creatorcontrib>Guliyeva, Gulnar</creatorcontrib><creatorcontrib>Gritsina, Mariya</creatorcontrib><creatorcontrib>Kuemmerle, Tobias</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oeser, Julian</au><au>Zurell, Damaris</au><au>Mayer, Frieder</au><au>Çoraman, Emrah</au><au>Toshkova, Nia</au><au>Deleva, Stanimira</au><au>Natradze, Ioseb</au><au>Benda, Petr</au><au>Ghazaryan, Astghik</au><au>Irmak, Sercan</au><au>Hasanov, Nijat</au><au>Guliyeva, Gulnar</au><au>Gritsina, Mariya</au><au>Kuemmerle, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models</atitle><jtitle>Global ecology and biogeography</jtitle><date>2024-12</date><risdate>2024</risdate><volume>33</volume><issue>12</issue><epage>n/a</epage><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>ABSTRACT Aim Species distribution models (SDMs) are powerful tools for assessing suitable habitats across large areas and at fine spatial resolution. Yet, the usefulness of SDMs for mapping species' realised distributions is often limited since data biases or missing information on dispersal barriers or biotic interactions hinder them from accurately delineating species' range limits. One way to overcome this limitation is to integrate SDMs with expert range maps, which provide coarse‐scale information on the extent of species' ranges and thereby range limits that are complementary to information offered by SDMs. Innovation Here, we propose a new approach for integrating expert range maps in SDMs based on an ensemble method called stacked generalisation. Specifically, our approach relies on training a meta‐learner regression model using predictions from one or more SDM algorithms alongside the distance of training points to expert‐defined ranges as predictor variables. We demonstrate our approach with an occurrence dataset for 49 bat species covering four biodiversity hotspots in the Eastern Mediterranean, Western Asia and Central Asia. Main Conclusions Our approach offers a flexible method to integrate expert range maps with any combination of SDM modelling algorithms, thus facilitating the use of algorithm ensembles. In addition, it provides a novel, data‐driven way to account for uncertainty in expert‐defined ranges not requiring prior knowledge about their accuracy, which is often lacking. Integrating expert range maps into SDMs for bats resulted in more realistic predictions of distribution patterns that showed narrower niche breadths and smaller range overlaps between species compared to traditional SDMs. Our approach holds promise to improve assessments of species distributions, while our work highlights the overlooked potential of stacked generalisation as an ensemble method in species distribution modelling.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13911</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3216-6817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2024-12, Vol.33 (12), p.n/a
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_journals_3128424308
source Wiley Online Library
subjects Algorithms
biodiversity
Biodiversity hot spots
biogeography
Central Asia
Chiroptera
data collection
Distribution patterns
ensemble
expert range map
Geographical distribution
Information processing
meta‐learner
Modelling
range limit
realised distribution
regression analysis
Regression models
SDM
Spatial discrimination
Spatial distribution
Spatial resolution
Species
species distribution modelling
stacked generalisation
stacking
super learner
Training
uncertainty
West Asia
title The Best of Two Worlds: Using Stacked Generalisation for Integrating Expert Range Maps in Species Distribution Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Best%20of%20Two%20Worlds:%20Using%20Stacked%20Generalisation%20for%C2%A0Integrating%20Expert%20Range%20Maps%20in%20Species%20Distribution%20Models&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Oeser,%20Julian&rft.date=2024-12&rft.volume=33&rft.issue=12&rft.epage=n/a&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13911&rft_dat=%3Cproquest_cross%3E3128424308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128424308&rft_id=info:pmid/&rfr_iscdi=true