Wake dynamics of side-by-side hydrokinetic turbines in open channel flows

Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient ( CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2024-11, Vol.36 (11)
Hauptverfasser: Dong, Guodan, Zhao, Zhenzhou, Xu, Chang, Qin, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 36
creator Dong, Guodan
Zhao, Zhenzhou
Xu, Chang
Qin, Jianhua
description Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient ( CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios ( λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend CP,3T−S>CP,3T−M>CP,2T>CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal λ, wake effects dominate over inflow effects.
doi_str_mv 10.1063/5.0239667
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128391969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128391969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-3cb768f3f71c091813463d06ead703cd0a2837cf37d703b3a432a1335ff1aef63</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0HAk8LWZF_7sjlKsVooeFE8hmw2oemfpCZbZL-9u7RnTzMDv_cGhpB7ziacITzPJqwEiSguyIizShYCES8HL1iBCPya3OS8YYyBLHFElt96a2nTBb33JtPoaPaNLequGJSuuybFrQ-29Ya2x1T3NlMfaDzYQM1ah2B31O3ib74lV07vsr0765h8LV4_5-_F6uNtOX9ZFYZXZVuAqQVWDpzghklecZgiNAytbgQD0zBdViCMAzHkGvQUSs0BZs5xbR3CmDyc_h5S_Dna3KpNPKbQVyrg_a3kEmVPPZ4ok2LOyTp1SH6vU6c4U8NSaqbOS_Xs04nNxre69TH8A_8BulxnSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128391969</pqid></control><display><type>article</type><title>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</title><source>AIP Journals Complete</source><creator>Dong, Guodan ; Zhao, Zhenzhou ; Xu, Chang ; Qin, Jianhua</creator><creatorcontrib>Dong, Guodan ; Zhao, Zhenzhou ; Xu, Chang ; Qin, Jianhua</creatorcontrib><description>Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient ( CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios ( λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend CP,3T−S&gt;CP,3T−M&gt;CP,2T&gt;CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal λ, wake effects dominate over inflow effects.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0239667</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Aerodynamics ; Configurations ; Energy budget ; Flow-density-speed relationships ; Kinetic energy ; Large eddy simulation ; Open channel flow ; Open channels ; Placement ; Power spectral density ; Tip speed ; Turbines ; Turbulence ; Wakes</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-3cb768f3f71c091813463d06ead703cd0a2837cf37d703b3a432a1335ff1aef63</cites><orcidid>0000-0002-9932-400X ; 0000-0002-8411-9636 ; 0000-0001-8488-8294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Dong, Guodan</creatorcontrib><creatorcontrib>Zhao, Zhenzhou</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Qin, Jianhua</creatorcontrib><title>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</title><title>Physics of fluids (1994)</title><description>Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient ( CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios ( λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend CP,3T−S&gt;CP,3T−M&gt;CP,2T&gt;CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal λ, wake effects dominate over inflow effects.</description><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Configurations</subject><subject>Energy budget</subject><subject>Flow-density-speed relationships</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Open channel flow</subject><subject>Open channels</subject><subject>Placement</subject><subject>Power spectral density</subject><subject>Tip speed</subject><subject>Turbines</subject><subject>Turbulence</subject><subject>Wakes</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv0HAk8LWZF_7sjlKsVooeFE8hmw2oemfpCZbZL-9u7RnTzMDv_cGhpB7ziacITzPJqwEiSguyIizShYCES8HL1iBCPya3OS8YYyBLHFElt96a2nTBb33JtPoaPaNLequGJSuuybFrQ-29Ya2x1T3NlMfaDzYQM1ah2B31O3ib74lV07vsr0765h8LV4_5-_F6uNtOX9ZFYZXZVuAqQVWDpzghklecZgiNAytbgQD0zBdViCMAzHkGvQUSs0BZs5xbR3CmDyc_h5S_Dna3KpNPKbQVyrg_a3kEmVPPZ4ok2LOyTp1SH6vU6c4U8NSaqbOS_Xs04nNxre69TH8A_8BulxnSw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dong, Guodan</creator><creator>Zhao, Zhenzhou</creator><creator>Xu, Chang</creator><creator>Qin, Jianhua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9932-400X</orcidid><orcidid>https://orcid.org/0000-0002-8411-9636</orcidid><orcidid>https://orcid.org/0000-0001-8488-8294</orcidid></search><sort><creationdate>202411</creationdate><title>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</title><author>Dong, Guodan ; Zhao, Zhenzhou ; Xu, Chang ; Qin, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-3cb768f3f71c091813463d06ead703cd0a2837cf37d703b3a432a1335ff1aef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Configurations</topic><topic>Energy budget</topic><topic>Flow-density-speed relationships</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Open channel flow</topic><topic>Open channels</topic><topic>Placement</topic><topic>Power spectral density</topic><topic>Tip speed</topic><topic>Turbines</topic><topic>Turbulence</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Guodan</creatorcontrib><creatorcontrib>Zhao, Zhenzhou</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Qin, Jianhua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Guodan</au><au>Zhao, Zhenzhou</au><au>Xu, Chang</au><au>Qin, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient ( CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios ( λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend CP,3T−S&gt;CP,3T−M&gt;CP,2T&gt;CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal λ, wake effects dominate over inflow effects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239667</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9932-400X</orcidid><orcidid>https://orcid.org/0000-0002-8411-9636</orcidid><orcidid>https://orcid.org/0000-0001-8488-8294</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2024-11, Vol.36 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_3128391969
source AIP Journals Complete
subjects Actuators
Aerodynamics
Configurations
Energy budget
Flow-density-speed relationships
Kinetic energy
Large eddy simulation
Open channel flow
Open channels
Placement
Power spectral density
Tip speed
Turbines
Turbulence
Wakes
title Wake dynamics of side-by-side hydrokinetic turbines in open channel flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wake%20dynamics%20of%20side-by-side%20hydrokinetic%20turbines%20in%20open%20channel%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Dong,%20Guodan&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0239667&rft_dat=%3Cproquest_cross%3E3128391969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128391969&rft_id=info:pmid/&rfr_iscdi=true