Wake dynamics of side-by-side hydrokinetic turbines in open channel flows
Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient ( CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-t...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-11, Vol.36 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Dong, Guodan Zhao, Zhenzhou Xu, Chang Qin, Jianhua |
description | Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient (
CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios (
λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that
CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The
CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend
CP,3T−S>CP,3T−M>CP,2T>CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of
St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal
λ, wake effects dominate over inflow effects. |
doi_str_mv | 10.1063/5.0239667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128391969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128391969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-3cb768f3f71c091813463d06ead703cd0a2837cf37d703b3a432a1335ff1aef63</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsHv0HAk8LWZF_7sjlKsVooeFE8hmw2oemfpCZbZL-9u7RnTzMDv_cGhpB7ziacITzPJqwEiSguyIizShYCES8HL1iBCPya3OS8YYyBLHFElt96a2nTBb33JtPoaPaNLequGJSuuybFrQ-29Ya2x1T3NlMfaDzYQM1ah2B31O3ib74lV07vsr0765h8LV4_5-_F6uNtOX9ZFYZXZVuAqQVWDpzghklecZgiNAytbgQD0zBdViCMAzHkGvQUSs0BZs5xbR3CmDyc_h5S_Dna3KpNPKbQVyrg_a3kEmVPPZ4ok2LOyTp1SH6vU6c4U8NSaqbOS_Xs04nNxre69TH8A_8BulxnSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128391969</pqid></control><display><type>article</type><title>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</title><source>AIP Journals Complete</source><creator>Dong, Guodan ; Zhao, Zhenzhou ; Xu, Chang ; Qin, Jianhua</creator><creatorcontrib>Dong, Guodan ; Zhao, Zhenzhou ; Xu, Chang ; Qin, Jianhua</creatorcontrib><description>Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient (
CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios (
λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that
CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The
CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend
CP,3T−S>CP,3T−M>CP,2T>CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of
St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal
λ, wake effects dominate over inflow effects.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0239667</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Aerodynamics ; Configurations ; Energy budget ; Flow-density-speed relationships ; Kinetic energy ; Large eddy simulation ; Open channel flow ; Open channels ; Placement ; Power spectral density ; Tip speed ; Turbines ; Turbulence ; Wakes</subject><ispartof>Physics of fluids (1994), 2024-11, Vol.36 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-3cb768f3f71c091813463d06ead703cd0a2837cf37d703b3a432a1335ff1aef63</cites><orcidid>0000-0002-9932-400X ; 0000-0002-8411-9636 ; 0000-0001-8488-8294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Dong, Guodan</creatorcontrib><creatorcontrib>Zhao, Zhenzhou</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Qin, Jianhua</creatorcontrib><title>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</title><title>Physics of fluids (1994)</title><description>Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient (
CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios (
λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that
CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The
CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend
CP,3T−S>CP,3T−M>CP,2T>CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of
St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal
λ, wake effects dominate over inflow effects.</description><subject>Actuators</subject><subject>Aerodynamics</subject><subject>Configurations</subject><subject>Energy budget</subject><subject>Flow-density-speed relationships</subject><subject>Kinetic energy</subject><subject>Large eddy simulation</subject><subject>Open channel flow</subject><subject>Open channels</subject><subject>Placement</subject><subject>Power spectral density</subject><subject>Tip speed</subject><subject>Turbines</subject><subject>Turbulence</subject><subject>Wakes</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsHv0HAk8LWZF_7sjlKsVooeFE8hmw2oemfpCZbZL-9u7RnTzMDv_cGhpB7ziacITzPJqwEiSguyIizShYCES8HL1iBCPya3OS8YYyBLHFElt96a2nTBb33JtPoaPaNLequGJSuuybFrQ-29Ya2x1T3NlMfaDzYQM1ah2B31O3ib74lV07vsr0765h8LV4_5-_F6uNtOX9ZFYZXZVuAqQVWDpzghklecZgiNAytbgQD0zBdViCMAzHkGvQUSs0BZs5xbR3CmDyc_h5S_Dna3KpNPKbQVyrg_a3kEmVPPZ4ok2LOyTp1SH6vU6c4U8NSaqbOS_Xs04nNxre69TH8A_8BulxnSw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Dong, Guodan</creator><creator>Zhao, Zhenzhou</creator><creator>Xu, Chang</creator><creator>Qin, Jianhua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9932-400X</orcidid><orcidid>https://orcid.org/0000-0002-8411-9636</orcidid><orcidid>https://orcid.org/0000-0001-8488-8294</orcidid></search><sort><creationdate>202411</creationdate><title>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</title><author>Dong, Guodan ; Zhao, Zhenzhou ; Xu, Chang ; Qin, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-3cb768f3f71c091813463d06ead703cd0a2837cf37d703b3a432a1335ff1aef63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuators</topic><topic>Aerodynamics</topic><topic>Configurations</topic><topic>Energy budget</topic><topic>Flow-density-speed relationships</topic><topic>Kinetic energy</topic><topic>Large eddy simulation</topic><topic>Open channel flow</topic><topic>Open channels</topic><topic>Placement</topic><topic>Power spectral density</topic><topic>Tip speed</topic><topic>Turbines</topic><topic>Turbulence</topic><topic>Wakes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Guodan</creatorcontrib><creatorcontrib>Zhao, Zhenzhou</creatorcontrib><creatorcontrib>Xu, Chang</creatorcontrib><creatorcontrib>Qin, Jianhua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Guodan</au><au>Zhao, Zhenzhou</au><au>Xu, Chang</au><au>Qin, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wake dynamics of side-by-side hydrokinetic turbines in open channel flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient (
CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios (
λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that
CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The
CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend
CP,3T−S>CP,3T−M>CP,2T>CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of
St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal
λ, wake effects dominate over inflow effects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239667</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9932-400X</orcidid><orcidid>https://orcid.org/0000-0002-8411-9636</orcidid><orcidid>https://orcid.org/0000-0001-8488-8294</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-11, Vol.36 (11) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_3128391969 |
source | AIP Journals Complete |
subjects | Actuators Aerodynamics Configurations Energy budget Flow-density-speed relationships Kinetic energy Large eddy simulation Open channel flow Open channels Placement Power spectral density Tip speed Turbines Turbulence Wakes |
title | Wake dynamics of side-by-side hydrokinetic turbines in open channel flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wake%20dynamics%20of%20side-by-side%20hydrokinetic%20turbines%20in%20open%20channel%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Dong,%20Guodan&rft.date=2024-11&rft.volume=36&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0239667&rft_dat=%3Cproquest_cross%3E3128391969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128391969&rft_id=info:pmid/&rfr_iscdi=true |