Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation
A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N 2 adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning...
Gespeichert in:
Veröffentlicht in: | Chemical research in Chinese universities 2024-12, Vol.40 (6), p.1192-1200 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1200 |
---|---|
container_issue | 6 |
container_start_page | 1192 |
container_title | Chemical research in Chinese universities |
container_volume | 40 |
creator | Huang, Yitong Wang, Yaquan Liu, Wenrong Bu, Lingzhen Qu, Liping Chu, Kailiang Guo, Niandong Zhang, Xian Su, Xuemei Li, Yaoning Sang, Juncai |
description | A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N
2
adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N
2
adsorption-desorption, and the adsorption capacity of N
2
and O
2
was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N
2
adsorption capacity, with the maximum reaching 28.05 cm
3
/g. However, there were no significant differences in the adsorbed capacity of O
2
by each sample. Therefore, the N
2
/O
2
separation factor also increased gradually with iterations, with the maximum up to 6.61. |
doi_str_mv | 10.1007/s40242-024-4073-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128284917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128284917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-e200cd75ab94cc972252de1fa6c03dc07a381638141bb4f9999ecd37a892bd5a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyZzebYylqhaKHWvAWstlsN0V312SL7bc3dQVPDszM5ffeDA-hawq3FEDeRQFMMJIGESA52Z-gCWMUCKeSnqJJgjKiQMA5uohxC8BVnosJKleHdmhc9BF3NV6u3vA6-naDV85VxA8umMF3LZ71feiMbfCXHxq88JsGPzM8q2IX-h9gbnpj_XDAdRfwzIdk0JtRfInOavMe3dXvnqL1w_3rfEGWL49P89mSWKqKgTgGYCuZmVIJa5VkLGOVo7XJLfDKgjS8oHlqQctS1CqVsxWXplCsrDLDp-hm9E2vfu5cHPS224U2ndScsoIVQlGZKDpSNnQxBlfrPvgPEw6agj5GqccodRr6GKXeJw0bNTGx7caFP-f_Rd-a43av</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128284917</pqid></control><display><type>article</type><title>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</title><source>Springer Online Journals</source><creator>Huang, Yitong ; Wang, Yaquan ; Liu, Wenrong ; Bu, Lingzhen ; Qu, Liping ; Chu, Kailiang ; Guo, Niandong ; Zhang, Xian ; Su, Xuemei ; Li, Yaoning ; Sang, Juncai</creator><creatorcontrib>Huang, Yitong ; Wang, Yaquan ; Liu, Wenrong ; Bu, Lingzhen ; Qu, Liping ; Chu, Kailiang ; Guo, Niandong ; Zhang, Xian ; Su, Xuemei ; Li, Yaoning ; Sang, Juncai</creatorcontrib><description>A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N
2
adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N
2
adsorption-desorption, and the adsorption capacity of N
2
and O
2
was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N
2
adsorption capacity, with the maximum reaching 28.05 cm
3
/g. However, there were no significant differences in the adsorbed capacity of O
2
by each sample. Therefore, the N
2
/O
2
separation factor also increased gradually with iterations, with the maximum up to 6.61.</description><identifier>ISSN: 1005-9040</identifier><identifier>EISSN: 2210-3171</identifier><identifier>DOI: 10.1007/s40242-024-4073-x</identifier><language>eng</language><publisher>Changchun: Jilin University and The Editorial Department of Chemical Research in Chinese Universities</publisher><subject>Adsorption ; Air separation ; Analytical Chemistry ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Fourier transforms ; Infrared analysis ; Infrared spectra ; Inorganic Chemistry ; Ion exchange ; Lithium ions ; Nucleation ; Organic Chemistry ; Physical Chemistry ; Pressure swing adsorption ; Specific surface ; Surface area ; Thermogravimetric analysis ; Zeolites</subject><ispartof>Chemical research in Chinese universities, 2024-12, Vol.40 (6), p.1192-1200</ispartof><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2024</rights><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-e200cd75ab94cc972252de1fa6c03dc07a381638141bb4f9999ecd37a892bd5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40242-024-4073-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40242-024-4073-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Yitong</creatorcontrib><creatorcontrib>Wang, Yaquan</creatorcontrib><creatorcontrib>Liu, Wenrong</creatorcontrib><creatorcontrib>Bu, Lingzhen</creatorcontrib><creatorcontrib>Qu, Liping</creatorcontrib><creatorcontrib>Chu, Kailiang</creatorcontrib><creatorcontrib>Guo, Niandong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Su, Xuemei</creatorcontrib><creatorcontrib>Li, Yaoning</creatorcontrib><creatorcontrib>Sang, Juncai</creatorcontrib><title>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</title><title>Chemical research in Chinese universities</title><addtitle>Chem. Res. Chin. Univ</addtitle><description>A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N
2
adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N
2
adsorption-desorption, and the adsorption capacity of N
2
and O
2
was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N
2
adsorption capacity, with the maximum reaching 28.05 cm
3
/g. However, there were no significant differences in the adsorbed capacity of O
2
by each sample. Therefore, the N
2
/O
2
separation factor also increased gradually with iterations, with the maximum up to 6.61.</description><subject>Adsorption</subject><subject>Air separation</subject><subject>Analytical Chemistry</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Inorganic Chemistry</subject><subject>Ion exchange</subject><subject>Lithium ions</subject><subject>Nucleation</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Pressure swing adsorption</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Thermogravimetric analysis</subject><subject>Zeolites</subject><issn>1005-9040</issn><issn>2210-3171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyZzebYylqhaKHWvAWstlsN0V312SL7bc3dQVPDszM5ffeDA-hawq3FEDeRQFMMJIGESA52Z-gCWMUCKeSnqJJgjKiQMA5uohxC8BVnosJKleHdmhc9BF3NV6u3vA6-naDV85VxA8umMF3LZ71feiMbfCXHxq88JsGPzM8q2IX-h9gbnpj_XDAdRfwzIdk0JtRfInOavMe3dXvnqL1w_3rfEGWL49P89mSWKqKgTgGYCuZmVIJa5VkLGOVo7XJLfDKgjS8oHlqQctS1CqVsxWXplCsrDLDp-hm9E2vfu5cHPS224U2ndScsoIVQlGZKDpSNnQxBlfrPvgPEw6agj5GqccodRr6GKXeJw0bNTGx7caFP-f_Rd-a43av</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Huang, Yitong</creator><creator>Wang, Yaquan</creator><creator>Liu, Wenrong</creator><creator>Bu, Lingzhen</creator><creator>Qu, Liping</creator><creator>Chu, Kailiang</creator><creator>Guo, Niandong</creator><creator>Zhang, Xian</creator><creator>Su, Xuemei</creator><creator>Li, Yaoning</creator><creator>Sang, Juncai</creator><general>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</title><author>Huang, Yitong ; Wang, Yaquan ; Liu, Wenrong ; Bu, Lingzhen ; Qu, Liping ; Chu, Kailiang ; Guo, Niandong ; Zhang, Xian ; Su, Xuemei ; Li, Yaoning ; Sang, Juncai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-e200cd75ab94cc972252de1fa6c03dc07a381638141bb4f9999ecd37a892bd5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Air separation</topic><topic>Analytical Chemistry</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Inorganic Chemistry</topic><topic>Ion exchange</topic><topic>Lithium ions</topic><topic>Nucleation</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Pressure swing adsorption</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Thermogravimetric analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yitong</creatorcontrib><creatorcontrib>Wang, Yaquan</creatorcontrib><creatorcontrib>Liu, Wenrong</creatorcontrib><creatorcontrib>Bu, Lingzhen</creatorcontrib><creatorcontrib>Qu, Liping</creatorcontrib><creatorcontrib>Chu, Kailiang</creatorcontrib><creatorcontrib>Guo, Niandong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Su, Xuemei</creatorcontrib><creatorcontrib>Li, Yaoning</creatorcontrib><creatorcontrib>Sang, Juncai</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical research in Chinese universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yitong</au><au>Wang, Yaquan</au><au>Liu, Wenrong</au><au>Bu, Lingzhen</au><au>Qu, Liping</au><au>Chu, Kailiang</au><au>Guo, Niandong</au><au>Zhang, Xian</au><au>Su, Xuemei</au><au>Li, Yaoning</au><au>Sang, Juncai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</atitle><jtitle>Chemical research in Chinese universities</jtitle><stitle>Chem. Res. Chin. Univ</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>40</volume><issue>6</issue><spage>1192</spage><epage>1200</epage><pages>1192-1200</pages><issn>1005-9040</issn><eissn>2210-3171</eissn><abstract>A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N
2
adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N
2
adsorption-desorption, and the adsorption capacity of N
2
and O
2
was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N
2
adsorption capacity, with the maximum reaching 28.05 cm
3
/g. However, there were no significant differences in the adsorbed capacity of O
2
by each sample. Therefore, the N
2
/O
2
separation factor also increased gradually with iterations, with the maximum up to 6.61.</abstract><cop>Changchun</cop><pub>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</pub><doi>10.1007/s40242-024-4073-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9040 |
ispartof | Chemical research in Chinese universities, 2024-12, Vol.40 (6), p.1192-1200 |
issn | 1005-9040 2210-3171 |
language | eng |
recordid | cdi_proquest_journals_3128284917 |
source | Springer Online Journals |
subjects | Adsorption Air separation Analytical Chemistry Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Fourier transforms Infrared analysis Infrared spectra Inorganic Chemistry Ion exchange Lithium ions Nucleation Organic Chemistry Physical Chemistry Pressure swing adsorption Specific surface Surface area Thermogravimetric analysis Zeolites |
title | Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20LSX%20Using%20Seed-iteration%20Approach%20with%20High%20N2%20Adsorption%20Capacity%20for%20Air%20Separation&rft.jtitle=Chemical%20research%20in%20Chinese%20universities&rft.au=Huang,%20Yitong&rft.date=2024-12-01&rft.volume=40&rft.issue=6&rft.spage=1192&rft.epage=1200&rft.pages=1192-1200&rft.issn=1005-9040&rft.eissn=2210-3171&rft_id=info:doi/10.1007/s40242-024-4073-x&rft_dat=%3Cproquest_cross%3E3128284917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128284917&rft_id=info:pmid/&rfr_iscdi=true |