Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation

A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N 2 adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical research in Chinese universities 2024-12, Vol.40 (6), p.1192-1200
Hauptverfasser: Huang, Yitong, Wang, Yaquan, Liu, Wenrong, Bu, Lingzhen, Qu, Liping, Chu, Kailiang, Guo, Niandong, Zhang, Xian, Su, Xuemei, Li, Yaoning, Sang, Juncai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1200
container_issue 6
container_start_page 1192
container_title Chemical research in Chinese universities
container_volume 40
creator Huang, Yitong
Wang, Yaquan
Liu, Wenrong
Bu, Lingzhen
Qu, Liping
Chu, Kailiang
Guo, Niandong
Zhang, Xian
Su, Xuemei
Li, Yaoning
Sang, Juncai
description A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N 2 adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N 2 adsorption-desorption, and the adsorption capacity of N 2 and O 2 was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N 2 adsorption capacity, with the maximum reaching 28.05 cm 3 /g. However, there were no significant differences in the adsorbed capacity of O 2 by each sample. Therefore, the N 2 /O 2 separation factor also increased gradually with iterations, with the maximum up to 6.61.
doi_str_mv 10.1007/s40242-024-4073-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128284917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128284917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-e200cd75ab94cc972252de1fa6c03dc07a381638141bb4f9999ecd37a892bd5a3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyZzebYylqhaKHWvAWstlsN0V312SL7bc3dQVPDszM5ffeDA-hawq3FEDeRQFMMJIGESA52Z-gCWMUCKeSnqJJgjKiQMA5uohxC8BVnosJKleHdmhc9BF3NV6u3vA6-naDV85VxA8umMF3LZ71feiMbfCXHxq88JsGPzM8q2IX-h9gbnpj_XDAdRfwzIdk0JtRfInOavMe3dXvnqL1w_3rfEGWL49P89mSWKqKgTgGYCuZmVIJa5VkLGOVo7XJLfDKgjS8oHlqQctS1CqVsxWXplCsrDLDp-hm9E2vfu5cHPS224U2ndScsoIVQlGZKDpSNnQxBlfrPvgPEw6agj5GqccodRr6GKXeJw0bNTGx7caFP-f_Rd-a43av</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128284917</pqid></control><display><type>article</type><title>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</title><source>Springer Online Journals</source><creator>Huang, Yitong ; Wang, Yaquan ; Liu, Wenrong ; Bu, Lingzhen ; Qu, Liping ; Chu, Kailiang ; Guo, Niandong ; Zhang, Xian ; Su, Xuemei ; Li, Yaoning ; Sang, Juncai</creator><creatorcontrib>Huang, Yitong ; Wang, Yaquan ; Liu, Wenrong ; Bu, Lingzhen ; Qu, Liping ; Chu, Kailiang ; Guo, Niandong ; Zhang, Xian ; Su, Xuemei ; Li, Yaoning ; Sang, Juncai</creatorcontrib><description>A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N 2 adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N 2 adsorption-desorption, and the adsorption capacity of N 2 and O 2 was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N 2 adsorption capacity, with the maximum reaching 28.05 cm 3 /g. However, there were no significant differences in the adsorbed capacity of O 2 by each sample. Therefore, the N 2 /O 2 separation factor also increased gradually with iterations, with the maximum up to 6.61.</description><identifier>ISSN: 1005-9040</identifier><identifier>EISSN: 2210-3171</identifier><identifier>DOI: 10.1007/s40242-024-4073-x</identifier><language>eng</language><publisher>Changchun: Jilin University and The Editorial Department of Chemical Research in Chinese Universities</publisher><subject>Adsorption ; Air separation ; Analytical Chemistry ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Fourier transforms ; Infrared analysis ; Infrared spectra ; Inorganic Chemistry ; Ion exchange ; Lithium ions ; Nucleation ; Organic Chemistry ; Physical Chemistry ; Pressure swing adsorption ; Specific surface ; Surface area ; Thermogravimetric analysis ; Zeolites</subject><ispartof>Chemical research in Chinese universities, 2024-12, Vol.40 (6), p.1192-1200</ispartof><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2024</rights><rights>Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-e200cd75ab94cc972252de1fa6c03dc07a381638141bb4f9999ecd37a892bd5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40242-024-4073-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40242-024-4073-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Yitong</creatorcontrib><creatorcontrib>Wang, Yaquan</creatorcontrib><creatorcontrib>Liu, Wenrong</creatorcontrib><creatorcontrib>Bu, Lingzhen</creatorcontrib><creatorcontrib>Qu, Liping</creatorcontrib><creatorcontrib>Chu, Kailiang</creatorcontrib><creatorcontrib>Guo, Niandong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Su, Xuemei</creatorcontrib><creatorcontrib>Li, Yaoning</creatorcontrib><creatorcontrib>Sang, Juncai</creatorcontrib><title>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</title><title>Chemical research in Chinese universities</title><addtitle>Chem. Res. Chin. Univ</addtitle><description>A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N 2 adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N 2 adsorption-desorption, and the adsorption capacity of N 2 and O 2 was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N 2 adsorption capacity, with the maximum reaching 28.05 cm 3 /g. However, there were no significant differences in the adsorbed capacity of O 2 by each sample. Therefore, the N 2 /O 2 separation factor also increased gradually with iterations, with the maximum up to 6.61.</description><subject>Adsorption</subject><subject>Air separation</subject><subject>Analytical Chemistry</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Inorganic Chemistry</subject><subject>Ion exchange</subject><subject>Lithium ions</subject><subject>Nucleation</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Pressure swing adsorption</subject><subject>Specific surface</subject><subject>Surface area</subject><subject>Thermogravimetric analysis</subject><subject>Zeolites</subject><issn>1005-9040</issn><issn>2210-3171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyZzebYylqhaKHWvAWstlsN0V312SL7bc3dQVPDszM5ffeDA-hawq3FEDeRQFMMJIGESA52Z-gCWMUCKeSnqJJgjKiQMA5uohxC8BVnosJKleHdmhc9BF3NV6u3vA6-naDV85VxA8umMF3LZ71feiMbfCXHxq88JsGPzM8q2IX-h9gbnpj_XDAdRfwzIdk0JtRfInOavMe3dXvnqL1w_3rfEGWL49P89mSWKqKgTgGYCuZmVIJa5VkLGOVo7XJLfDKgjS8oHlqQctS1CqVsxWXplCsrDLDp-hm9E2vfu5cHPS224U2ndScsoIVQlGZKDpSNnQxBlfrPvgPEw6agj5GqccodRr6GKXeJw0bNTGx7caFP-f_Rd-a43av</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Huang, Yitong</creator><creator>Wang, Yaquan</creator><creator>Liu, Wenrong</creator><creator>Bu, Lingzhen</creator><creator>Qu, Liping</creator><creator>Chu, Kailiang</creator><creator>Guo, Niandong</creator><creator>Zhang, Xian</creator><creator>Su, Xuemei</creator><creator>Li, Yaoning</creator><creator>Sang, Juncai</creator><general>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</title><author>Huang, Yitong ; Wang, Yaquan ; Liu, Wenrong ; Bu, Lingzhen ; Qu, Liping ; Chu, Kailiang ; Guo, Niandong ; Zhang, Xian ; Su, Xuemei ; Li, Yaoning ; Sang, Juncai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-e200cd75ab94cc972252de1fa6c03dc07a381638141bb4f9999ecd37a892bd5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Air separation</topic><topic>Analytical Chemistry</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Inorganic Chemistry</topic><topic>Ion exchange</topic><topic>Lithium ions</topic><topic>Nucleation</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Pressure swing adsorption</topic><topic>Specific surface</topic><topic>Surface area</topic><topic>Thermogravimetric analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yitong</creatorcontrib><creatorcontrib>Wang, Yaquan</creatorcontrib><creatorcontrib>Liu, Wenrong</creatorcontrib><creatorcontrib>Bu, Lingzhen</creatorcontrib><creatorcontrib>Qu, Liping</creatorcontrib><creatorcontrib>Chu, Kailiang</creatorcontrib><creatorcontrib>Guo, Niandong</creatorcontrib><creatorcontrib>Zhang, Xian</creatorcontrib><creatorcontrib>Su, Xuemei</creatorcontrib><creatorcontrib>Li, Yaoning</creatorcontrib><creatorcontrib>Sang, Juncai</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical research in Chinese universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yitong</au><au>Wang, Yaquan</au><au>Liu, Wenrong</au><au>Bu, Lingzhen</au><au>Qu, Liping</au><au>Chu, Kailiang</au><au>Guo, Niandong</au><au>Zhang, Xian</au><au>Su, Xuemei</au><au>Li, Yaoning</au><au>Sang, Juncai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation</atitle><jtitle>Chemical research in Chinese universities</jtitle><stitle>Chem. Res. Chin. Univ</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>40</volume><issue>6</issue><spage>1192</spage><epage>1200</epage><pages>1192-1200</pages><issn>1005-9040</issn><eissn>2210-3171</eissn><abstract>A series of low silica X zeolites (LSX) was synthesized through a seed-iteration approach, based on the seed addition strategy, and then loaded with lithium ions by an ion exchanging method to obtain high N 2 adsorption capacity. These zeolites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra (FTIR), thermogravimetric analysis (TGA) and N 2 adsorption-desorption, and the adsorption capacity of N 2 and O 2 was evaluated by the vacuum pressure swing adsorption (VPSA) operation. The results showed that the nucleation period of the synthetic process could be effectively shortened by adding seed; as the seed iterations increased, the specific surface area and pore volume of the zeolites increased; the higher specific surface area and the pore volume, the higher the extent of the N 2 adsorption capacity, with the maximum reaching 28.05 cm 3 /g. However, there were no significant differences in the adsorbed capacity of O 2 by each sample. Therefore, the N 2 /O 2 separation factor also increased gradually with iterations, with the maximum up to 6.61.</abstract><cop>Changchun</cop><pub>Jilin University and The Editorial Department of Chemical Research in Chinese Universities</pub><doi>10.1007/s40242-024-4073-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-9040
ispartof Chemical research in Chinese universities, 2024-12, Vol.40 (6), p.1192-1200
issn 1005-9040
2210-3171
language eng
recordid cdi_proquest_journals_3128284917
source Springer Online Journals
subjects Adsorption
Air separation
Analytical Chemistry
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Fourier transforms
Infrared analysis
Infrared spectra
Inorganic Chemistry
Ion exchange
Lithium ions
Nucleation
Organic Chemistry
Physical Chemistry
Pressure swing adsorption
Specific surface
Surface area
Thermogravimetric analysis
Zeolites
title Synthesis of LSX Using Seed-iteration Approach with High N2 Adsorption Capacity for Air Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20LSX%20Using%20Seed-iteration%20Approach%20with%20High%20N2%20Adsorption%20Capacity%20for%20Air%20Separation&rft.jtitle=Chemical%20research%20in%20Chinese%20universities&rft.au=Huang,%20Yitong&rft.date=2024-12-01&rft.volume=40&rft.issue=6&rft.spage=1192&rft.epage=1200&rft.pages=1192-1200&rft.issn=1005-9040&rft.eissn=2210-3171&rft_id=info:doi/10.1007/s40242-024-4073-x&rft_dat=%3Cproquest_cross%3E3128284917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128284917&rft_id=info:pmid/&rfr_iscdi=true