Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review
Optimization is the process of creating the best possible outcome while taking into consideration the given conditions. The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements. When faced with a problem that has several p...
Gespeichert in:
Veröffentlicht in: | AI in civil engineering 2024-12, Vol.3 (1), p.17, Article 17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | AI in civil engineering |
container_volume | 3 |
creator | Ghaemifard, Saeedeh Ghannadiasl, Amin |
description | Optimization is the process of creating the best possible outcome while taking into consideration the given conditions. The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements. When faced with a problem that has several possible solutions, an optimization technique is used to identify the best one. This involves checking different search domains at the right time, depending on the specific problem. To solve these optimization problems, nature-inspired algorithms are used as part of stochastic methods. In civil engineering, numerous design optimization problems are nonlinear and can be difficult to solve via traditional techniques. In such points, metaheuristic algorithms can be a more useful and practical option for civil engineering usages. These algorithms combine randomness and decisive paths to compare multiple solutions and select the most satisfactory one. This article briefly presents and discusses the application and efficiency of various metaheuristic algorithms in civil engineering topics. |
doi_str_mv | 10.1007/s43503-024-00036-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3128265376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128265376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1544-d7ad4437bac7a4402365f7d4434f989a3a432b362d9b97918e3264622d8cd59f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwFPAczTJZDcbPEnxHxS82HNId5NtSndTk92KfnpTV_AmDMzw-L2Z4SF0xegNo1TeJgEFBUK5IJRSKIk4QTMugZICFD_NM1WSUCXgHM1T2maIKwXA2Ay5VTKtTTg43NnBbOwYfRp8jc2uDdEPmy5h3-c62Cy3ZvB9i2t_8LusuWjSEMd6GKPFYT_4zn9lIvS4C43dpTtscLQHbz8u0Zkzu2Tnv_0CrR4f3hbPZPn69LK4X5KaFUKQRppGCJBrU0sjBOVQFk4eJeFUpQwYAXwNJW_UWknFKgu8FCXnTVU3hXJwga6nvfsY3sf8st6GMfb5pAbGK14WIMtM8YmqY0gpWqf30XcmfmpG9TFSPUWqc6T6J1ItsgkmU8pw39r4t_of1zcIgnom</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128265376</pqid></control><display><type>article</type><title>Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><source>Springer Nature OA Free Journals</source><creator>Ghaemifard, Saeedeh ; Ghannadiasl, Amin</creator><creatorcontrib>Ghaemifard, Saeedeh ; Ghannadiasl, Amin</creatorcontrib><description>Optimization is the process of creating the best possible outcome while taking into consideration the given conditions. The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements. When faced with a problem that has several possible solutions, an optimization technique is used to identify the best one. This involves checking different search domains at the right time, depending on the specific problem. To solve these optimization problems, nature-inspired algorithms are used as part of stochastic methods. In civil engineering, numerous design optimization problems are nonlinear and can be difficult to solve via traditional techniques. In such points, metaheuristic algorithms can be a more useful and practical option for civil engineering usages. These algorithms combine randomness and decisive paths to compare multiple solutions and select the most satisfactory one. This article briefly presents and discusses the application and efficiency of various metaheuristic algorithms in civil engineering topics.</description><identifier>ISSN: 2097-0943</identifier><identifier>EISSN: 2730-5392</identifier><identifier>DOI: 10.1007/s43503-024-00036-4</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Artificial Intelligence ; Civil Engineering ; Concrete ; Design engineering ; Design optimization ; Earthquakes ; Engineering ; Genetic algorithms ; Neural networks ; Optimization algorithms ; Ratios ; Reinforced concrete ; Review ; Seismic engineering ; Shear strength ; Variables</subject><ispartof>AI in civil engineering, 2024-12, Vol.3 (1), p.17, Article 17</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1544-d7ad4437bac7a4402365f7d4434f989a3a432b362d9b97918e3264622d8cd59f3</cites><orcidid>0000-0003-2669-2319 ; 0000-0001-5661-4878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43503-024-00036-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3128265376?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21369,27903,27904,33723,41098,42167,43783,51553</link.rule.ids></links><search><creatorcontrib>Ghaemifard, Saeedeh</creatorcontrib><creatorcontrib>Ghannadiasl, Amin</creatorcontrib><title>Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review</title><title>AI in civil engineering</title><addtitle>AI Civ. Eng</addtitle><description>Optimization is the process of creating the best possible outcome while taking into consideration the given conditions. The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements. When faced with a problem that has several possible solutions, an optimization technique is used to identify the best one. This involves checking different search domains at the right time, depending on the specific problem. To solve these optimization problems, nature-inspired algorithms are used as part of stochastic methods. In civil engineering, numerous design optimization problems are nonlinear and can be difficult to solve via traditional techniques. In such points, metaheuristic algorithms can be a more useful and practical option for civil engineering usages. These algorithms combine randomness and decisive paths to compare multiple solutions and select the most satisfactory one. This article briefly presents and discusses the application and efficiency of various metaheuristic algorithms in civil engineering topics.</description><subject>Artificial Intelligence</subject><subject>Civil Engineering</subject><subject>Concrete</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Earthquakes</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Neural networks</subject><subject>Optimization algorithms</subject><subject>Ratios</subject><subject>Reinforced concrete</subject><subject>Review</subject><subject>Seismic engineering</subject><subject>Shear strength</subject><subject>Variables</subject><issn>2097-0943</issn><issn>2730-5392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWLRfwFPAczTJZDcbPEnxHxS82HNId5NtSndTk92KfnpTV_AmDMzw-L2Z4SF0xegNo1TeJgEFBUK5IJRSKIk4QTMugZICFD_NM1WSUCXgHM1T2maIKwXA2Ay5VTKtTTg43NnBbOwYfRp8jc2uDdEPmy5h3-c62Cy3ZvB9i2t_8LusuWjSEMd6GKPFYT_4zn9lIvS4C43dpTtscLQHbz8u0Zkzu2Tnv_0CrR4f3hbPZPn69LK4X5KaFUKQRppGCJBrU0sjBOVQFk4eJeFUpQwYAXwNJW_UWknFKgu8FCXnTVU3hXJwga6nvfsY3sf8st6GMfb5pAbGK14WIMtM8YmqY0gpWqf30XcmfmpG9TFSPUWqc6T6J1ItsgkmU8pw39r4t_of1zcIgnom</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ghaemifard, Saeedeh</creator><creator>Ghannadiasl, Amin</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2669-2319</orcidid><orcidid>https://orcid.org/0000-0001-5661-4878</orcidid></search><sort><creationdate>20241201</creationdate><title>Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review</title><author>Ghaemifard, Saeedeh ; Ghannadiasl, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1544-d7ad4437bac7a4402365f7d4434f989a3a432b362d9b97918e3264622d8cd59f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Civil Engineering</topic><topic>Concrete</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Earthquakes</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Neural networks</topic><topic>Optimization algorithms</topic><topic>Ratios</topic><topic>Reinforced concrete</topic><topic>Review</topic><topic>Seismic engineering</topic><topic>Shear strength</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghaemifard, Saeedeh</creatorcontrib><creatorcontrib>Ghannadiasl, Amin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>AI in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghaemifard, Saeedeh</au><au>Ghannadiasl, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review</atitle><jtitle>AI in civil engineering</jtitle><stitle>AI Civ. Eng</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>17</spage><pages>17-</pages><artnum>17</artnum><issn>2097-0943</issn><eissn>2730-5392</eissn><abstract>Optimization is the process of creating the best possible outcome while taking into consideration the given conditions. The ultimate goal of optimization is to maximize or minimize the desired effects to meet the technological and management requirements. When faced with a problem that has several possible solutions, an optimization technique is used to identify the best one. This involves checking different search domains at the right time, depending on the specific problem. To solve these optimization problems, nature-inspired algorithms are used as part of stochastic methods. In civil engineering, numerous design optimization problems are nonlinear and can be difficult to solve via traditional techniques. In such points, metaheuristic algorithms can be a more useful and practical option for civil engineering usages. These algorithms combine randomness and decisive paths to compare multiple solutions and select the most satisfactory one. This article briefly presents and discusses the application and efficiency of various metaheuristic algorithms in civil engineering topics.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s43503-024-00036-4</doi><orcidid>https://orcid.org/0000-0003-2669-2319</orcidid><orcidid>https://orcid.org/0000-0001-5661-4878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2097-0943 |
ispartof | AI in civil engineering, 2024-12, Vol.3 (1), p.17, Article 17 |
issn | 2097-0943 2730-5392 |
language | eng |
recordid | cdi_proquest_journals_3128265376 |
source | Alma/SFX Local Collection; ProQuest Central; Springer Nature OA Free Journals |
subjects | Artificial Intelligence Civil Engineering Concrete Design engineering Design optimization Earthquakes Engineering Genetic algorithms Neural networks Optimization algorithms Ratios Reinforced concrete Review Seismic engineering Shear strength Variables |
title | Usages of metaheuristic algorithms in investigating civil infrastructure optimization models; a review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Usages%20of%20metaheuristic%20algorithms%20in%20investigating%20civil%20infrastructure%20optimization%20models;%20a%20review&rft.jtitle=AI%20in%20civil%20engineering&rft.au=Ghaemifard,%20Saeedeh&rft.date=2024-12-01&rft.volume=3&rft.issue=1&rft.spage=17&rft.pages=17-&rft.artnum=17&rft.issn=2097-0943&rft.eissn=2730-5392&rft_id=info:doi/10.1007/s43503-024-00036-4&rft_dat=%3Cproquest_cross%3E3128265376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128265376&rft_id=info:pmid/&rfr_iscdi=true |