Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers

Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber ampl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-11, Vol.12 (32), p.n/a
Hauptverfasser: Hsiao, Yu‐Hsuan, Chen, Kuan‐Chun, Chien, Chun‐Ling, Huang, Wen‐Tse, Majewska, Natalia, Kamiński, Mikołaj, Mahlik, Sebastian, Leniec, Grzegorz, Mijowska, Ewa, Huang, Sheng‐Lung, Liu, Ru‐Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced optical materials
container_volume 12
creator Hsiao, Yu‐Hsuan
Chen, Kuan‐Chun
Chien, Chun‐Ling
Huang, Wen‐Tse
Majewska, Natalia
Kamiński, Mikołaj
Mahlik, Sebastian
Leniec, Grzegorz
Mijowska, Ewa
Huang, Sheng‐Lung
Liu, Ru‐Shi
description Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided. A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.
doi_str_mv 10.1002/adom.202401543
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3128088811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128088811</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1633-6a40df5f638644f7b8fb30ef4a953519953dcc85d3286cc5086b0811ea31f7253</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhSMEElVhZbbEiFrsOE6csaS0VCqUAWbrktiNqyQOdlLUjZmJ38gvIaWoYrm77_T0nvQ874rgMcHYv4XcVGMf-wEmLKAn3sAnMRsRHJHTf_e5d-ncBmPcA42DaOB93lkDeQp1jp4k2O-Pr0WtLFiZo8QGNz1PTdPDHGwtW_RcGNcUxjrUFtZ06wJN9RZKWbcogTLTXYWSAuxaosRUjawdtNrUSBmLJvkW6uzXd-daKNFMp7J_V02plZbWXXhnCkonL__20Hud3b8kD6Plar5IJstRQ0JKRyEEOFdMhZSHQaCilKuUYqkCiBllJO5nnmWc5dTnYZYxzMMUc0IkUKIin9Ghd33wbax566RrxcZ0tu4jBSU-x5z36l4VH1TvupQ70Vhdgd0JgsW-b7HvWxz7FpPp6vFI9AcDBHiy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128088811</pqid></control><display><type>article</type><title>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsiao, Yu‐Hsuan ; Chen, Kuan‐Chun ; Chien, Chun‐Ling ; Huang, Wen‐Tse ; Majewska, Natalia ; Kamiński, Mikołaj ; Mahlik, Sebastian ; Leniec, Grzegorz ; Mijowska, Ewa ; Huang, Sheng‐Lung ; Liu, Ru‐Shi</creator><creatorcontrib>Hsiao, Yu‐Hsuan ; Chen, Kuan‐Chun ; Chien, Chun‐Ling ; Huang, Wen‐Tse ; Majewska, Natalia ; Kamiński, Mikołaj ; Mahlik, Sebastian ; Leniec, Grzegorz ; Mijowska, Ewa ; Huang, Sheng‐Lung ; Liu, Ru‐Shi</creatorcontrib><description>Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided. A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401543</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amplifiers ; Broadband ; broadband emission ; Calcium ; charge compensation ; Communication ; Compensation ; crystal fiber ; Crystal fibers ; Doped crystals ; garnet structure ; Laser beam heating ; Light emitting diodes ; Near infrared radiation ; near‐infrared phosphor ; Phosphors ; Photoluminescence ; Transmission loss ; Water absorption</subject><ispartof>Advanced optical materials, 2024-11, Vol.12 (32), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1933-0355 ; 0009-0006-2638-442X ; 0000-0002-0837-4344 ; 0000-0002-1291-9052 ; 0000-0001-6244-1555 ; 0000-0002-7980-6992 ; 0000-0002-9514-049X ; 0000-0003-2023-8756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202401543$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202401543$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hsiao, Yu‐Hsuan</creatorcontrib><creatorcontrib>Chen, Kuan‐Chun</creatorcontrib><creatorcontrib>Chien, Chun‐Ling</creatorcontrib><creatorcontrib>Huang, Wen‐Tse</creatorcontrib><creatorcontrib>Majewska, Natalia</creatorcontrib><creatorcontrib>Kamiński, Mikołaj</creatorcontrib><creatorcontrib>Mahlik, Sebastian</creatorcontrib><creatorcontrib>Leniec, Grzegorz</creatorcontrib><creatorcontrib>Mijowska, Ewa</creatorcontrib><creatorcontrib>Huang, Sheng‐Lung</creatorcontrib><creatorcontrib>Liu, Ru‐Shi</creatorcontrib><title>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</title><title>Advanced optical materials</title><description>Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided. A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.</description><subject>Amplifiers</subject><subject>Broadband</subject><subject>broadband emission</subject><subject>Calcium</subject><subject>charge compensation</subject><subject>Communication</subject><subject>Compensation</subject><subject>crystal fiber</subject><subject>Crystal fibers</subject><subject>Doped crystals</subject><subject>garnet structure</subject><subject>Laser beam heating</subject><subject>Light emitting diodes</subject><subject>Near infrared radiation</subject><subject>near‐infrared phosphor</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Transmission loss</subject><subject>Water absorption</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAQhSMEElVhZbbEiFrsOE6csaS0VCqUAWbrktiNqyQOdlLUjZmJ38gvIaWoYrm77_T0nvQ874rgMcHYv4XcVGMf-wEmLKAn3sAnMRsRHJHTf_e5d-ncBmPcA42DaOB93lkDeQp1jp4k2O-Pr0WtLFiZo8QGNz1PTdPDHGwtW_RcGNcUxjrUFtZ06wJN9RZKWbcogTLTXYWSAuxaosRUjawdtNrUSBmLJvkW6uzXd-daKNFMp7J_V02plZbWXXhnCkonL__20Hud3b8kD6Plar5IJstRQ0JKRyEEOFdMhZSHQaCilKuUYqkCiBllJO5nnmWc5dTnYZYxzMMUc0IkUKIin9Ghd33wbax566RrxcZ0tu4jBSU-x5z36l4VH1TvupQ70Vhdgd0JgsW-b7HvWxz7FpPp6vFI9AcDBHiy</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hsiao, Yu‐Hsuan</creator><creator>Chen, Kuan‐Chun</creator><creator>Chien, Chun‐Ling</creator><creator>Huang, Wen‐Tse</creator><creator>Majewska, Natalia</creator><creator>Kamiński, Mikołaj</creator><creator>Mahlik, Sebastian</creator><creator>Leniec, Grzegorz</creator><creator>Mijowska, Ewa</creator><creator>Huang, Sheng‐Lung</creator><creator>Liu, Ru‐Shi</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1933-0355</orcidid><orcidid>https://orcid.org/0009-0006-2638-442X</orcidid><orcidid>https://orcid.org/0000-0002-0837-4344</orcidid><orcidid>https://orcid.org/0000-0002-1291-9052</orcidid><orcidid>https://orcid.org/0000-0001-6244-1555</orcidid><orcidid>https://orcid.org/0000-0002-7980-6992</orcidid><orcidid>https://orcid.org/0000-0002-9514-049X</orcidid><orcidid>https://orcid.org/0000-0003-2023-8756</orcidid></search><sort><creationdate>20241101</creationdate><title>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</title><author>Hsiao, Yu‐Hsuan ; Chen, Kuan‐Chun ; Chien, Chun‐Ling ; Huang, Wen‐Tse ; Majewska, Natalia ; Kamiński, Mikołaj ; Mahlik, Sebastian ; Leniec, Grzegorz ; Mijowska, Ewa ; Huang, Sheng‐Lung ; Liu, Ru‐Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1633-6a40df5f638644f7b8fb30ef4a953519953dcc85d3286cc5086b0811ea31f7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifiers</topic><topic>Broadband</topic><topic>broadband emission</topic><topic>Calcium</topic><topic>charge compensation</topic><topic>Communication</topic><topic>Compensation</topic><topic>crystal fiber</topic><topic>Crystal fibers</topic><topic>Doped crystals</topic><topic>garnet structure</topic><topic>Laser beam heating</topic><topic>Light emitting diodes</topic><topic>Near infrared radiation</topic><topic>near‐infrared phosphor</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Transmission loss</topic><topic>Water absorption</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Yu‐Hsuan</creatorcontrib><creatorcontrib>Chen, Kuan‐Chun</creatorcontrib><creatorcontrib>Chien, Chun‐Ling</creatorcontrib><creatorcontrib>Huang, Wen‐Tse</creatorcontrib><creatorcontrib>Majewska, Natalia</creatorcontrib><creatorcontrib>Kamiński, Mikołaj</creatorcontrib><creatorcontrib>Mahlik, Sebastian</creatorcontrib><creatorcontrib>Leniec, Grzegorz</creatorcontrib><creatorcontrib>Mijowska, Ewa</creatorcontrib><creatorcontrib>Huang, Sheng‐Lung</creatorcontrib><creatorcontrib>Liu, Ru‐Shi</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Yu‐Hsuan</au><au>Chen, Kuan‐Chun</au><au>Chien, Chun‐Ling</au><au>Huang, Wen‐Tse</au><au>Majewska, Natalia</au><au>Kamiński, Mikołaj</au><au>Mahlik, Sebastian</au><au>Leniec, Grzegorz</au><au>Mijowska, Ewa</au><au>Huang, Sheng‐Lung</au><au>Liu, Ru‐Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</atitle><jtitle>Advanced optical materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided. A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401543</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1933-0355</orcidid><orcidid>https://orcid.org/0009-0006-2638-442X</orcidid><orcidid>https://orcid.org/0000-0002-0837-4344</orcidid><orcidid>https://orcid.org/0000-0002-1291-9052</orcidid><orcidid>https://orcid.org/0000-0001-6244-1555</orcidid><orcidid>https://orcid.org/0000-0002-7980-6992</orcidid><orcidid>https://orcid.org/0000-0002-9514-049X</orcidid><orcidid>https://orcid.org/0000-0003-2023-8756</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2024-11, Vol.12 (32), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_3128088811
source Wiley Online Library Journals Frontfile Complete
subjects Amplifiers
Broadband
broadband emission
Calcium
charge compensation
Communication
Compensation
crystal fiber
Crystal fibers
Doped crystals
garnet structure
Laser beam heating
Light emitting diodes
Near infrared radiation
near‐infrared phosphor
Phosphors
Photoluminescence
Transmission loss
Water absorption
title Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Near%E2%80%90Infrared%20Cr4+%E2%80%90Doped%20Garnet%20Phosphors%20through%20Divalent%20Calcium%20Charge%20Compensation%20for%20Advanced%20Crystal%20Fiber%20Amplifiers&rft.jtitle=Advanced%20optical%20materials&rft.au=Hsiao,%20Yu%E2%80%90Hsuan&rft.date=2024-11-01&rft.volume=12&rft.issue=32&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401543&rft_dat=%3Cproquest_wiley%3E3128088811%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128088811&rft_id=info:pmid/&rfr_iscdi=true