Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers
Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber ampl...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2024-11, Vol.12 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 12 |
creator | Hsiao, Yu‐Hsuan Chen, Kuan‐Chun Chien, Chun‐Ling Huang, Wen‐Tse Majewska, Natalia Kamiński, Mikołaj Mahlik, Sebastian Leniec, Grzegorz Mijowska, Ewa Huang, Sheng‐Lung Liu, Ru‐Shi |
description | Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided.
A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication. |
doi_str_mv | 10.1002/adom.202401543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3128088811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128088811</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1633-6a40df5f638644f7b8fb30ef4a953519953dcc85d3286cc5086b0811ea31f7253</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhSMEElVhZbbEiFrsOE6csaS0VCqUAWbrktiNqyQOdlLUjZmJ38gvIaWoYrm77_T0nvQ874rgMcHYv4XcVGMf-wEmLKAn3sAnMRsRHJHTf_e5d-ncBmPcA42DaOB93lkDeQp1jp4k2O-Pr0WtLFiZo8QGNz1PTdPDHGwtW_RcGNcUxjrUFtZ06wJN9RZKWbcogTLTXYWSAuxaosRUjawdtNrUSBmLJvkW6uzXd-daKNFMp7J_V02plZbWXXhnCkonL__20Hud3b8kD6Plar5IJstRQ0JKRyEEOFdMhZSHQaCilKuUYqkCiBllJO5nnmWc5dTnYZYxzMMUc0IkUKIin9Ghd33wbax566RrxcZ0tu4jBSU-x5z36l4VH1TvupQ70Vhdgd0JgsW-b7HvWxz7FpPp6vFI9AcDBHiy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128088811</pqid></control><display><type>article</type><title>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hsiao, Yu‐Hsuan ; Chen, Kuan‐Chun ; Chien, Chun‐Ling ; Huang, Wen‐Tse ; Majewska, Natalia ; Kamiński, Mikołaj ; Mahlik, Sebastian ; Leniec, Grzegorz ; Mijowska, Ewa ; Huang, Sheng‐Lung ; Liu, Ru‐Shi</creator><creatorcontrib>Hsiao, Yu‐Hsuan ; Chen, Kuan‐Chun ; Chien, Chun‐Ling ; Huang, Wen‐Tse ; Majewska, Natalia ; Kamiński, Mikołaj ; Mahlik, Sebastian ; Leniec, Grzegorz ; Mijowska, Ewa ; Huang, Sheng‐Lung ; Liu, Ru‐Shi</creatorcontrib><description>Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided.
A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401543</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amplifiers ; Broadband ; broadband emission ; Calcium ; charge compensation ; Communication ; Compensation ; crystal fiber ; Crystal fibers ; Doped crystals ; garnet structure ; Laser beam heating ; Light emitting diodes ; Near infrared radiation ; near‐infrared phosphor ; Phosphors ; Photoluminescence ; Transmission loss ; Water absorption</subject><ispartof>Advanced optical materials, 2024-11, Vol.12 (32), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1933-0355 ; 0009-0006-2638-442X ; 0000-0002-0837-4344 ; 0000-0002-1291-9052 ; 0000-0001-6244-1555 ; 0000-0002-7980-6992 ; 0000-0002-9514-049X ; 0000-0003-2023-8756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202401543$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202401543$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hsiao, Yu‐Hsuan</creatorcontrib><creatorcontrib>Chen, Kuan‐Chun</creatorcontrib><creatorcontrib>Chien, Chun‐Ling</creatorcontrib><creatorcontrib>Huang, Wen‐Tse</creatorcontrib><creatorcontrib>Majewska, Natalia</creatorcontrib><creatorcontrib>Kamiński, Mikołaj</creatorcontrib><creatorcontrib>Mahlik, Sebastian</creatorcontrib><creatorcontrib>Leniec, Grzegorz</creatorcontrib><creatorcontrib>Mijowska, Ewa</creatorcontrib><creatorcontrib>Huang, Sheng‐Lung</creatorcontrib><creatorcontrib>Liu, Ru‐Shi</creatorcontrib><title>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</title><title>Advanced optical materials</title><description>Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided.
A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.</description><subject>Amplifiers</subject><subject>Broadband</subject><subject>broadband emission</subject><subject>Calcium</subject><subject>charge compensation</subject><subject>Communication</subject><subject>Compensation</subject><subject>crystal fiber</subject><subject>Crystal fibers</subject><subject>Doped crystals</subject><subject>garnet structure</subject><subject>Laser beam heating</subject><subject>Light emitting diodes</subject><subject>Near infrared radiation</subject><subject>near‐infrared phosphor</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Transmission loss</subject><subject>Water absorption</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDFPwzAQhSMEElVhZbbEiFrsOE6csaS0VCqUAWbrktiNqyQOdlLUjZmJ38gvIaWoYrm77_T0nvQ874rgMcHYv4XcVGMf-wEmLKAn3sAnMRsRHJHTf_e5d-ncBmPcA42DaOB93lkDeQp1jp4k2O-Pr0WtLFiZo8QGNz1PTdPDHGwtW_RcGNcUxjrUFtZ06wJN9RZKWbcogTLTXYWSAuxaosRUjawdtNrUSBmLJvkW6uzXd-daKNFMp7J_V02plZbWXXhnCkonL__20Hud3b8kD6Plar5IJstRQ0JKRyEEOFdMhZSHQaCilKuUYqkCiBllJO5nnmWc5dTnYZYxzMMUc0IkUKIin9Ghd33wbax566RrxcZ0tu4jBSU-x5z36l4VH1TvupQ70Vhdgd0JgsW-b7HvWxz7FpPp6vFI9AcDBHiy</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hsiao, Yu‐Hsuan</creator><creator>Chen, Kuan‐Chun</creator><creator>Chien, Chun‐Ling</creator><creator>Huang, Wen‐Tse</creator><creator>Majewska, Natalia</creator><creator>Kamiński, Mikołaj</creator><creator>Mahlik, Sebastian</creator><creator>Leniec, Grzegorz</creator><creator>Mijowska, Ewa</creator><creator>Huang, Sheng‐Lung</creator><creator>Liu, Ru‐Shi</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1933-0355</orcidid><orcidid>https://orcid.org/0009-0006-2638-442X</orcidid><orcidid>https://orcid.org/0000-0002-0837-4344</orcidid><orcidid>https://orcid.org/0000-0002-1291-9052</orcidid><orcidid>https://orcid.org/0000-0001-6244-1555</orcidid><orcidid>https://orcid.org/0000-0002-7980-6992</orcidid><orcidid>https://orcid.org/0000-0002-9514-049X</orcidid><orcidid>https://orcid.org/0000-0003-2023-8756</orcidid></search><sort><creationdate>20241101</creationdate><title>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</title><author>Hsiao, Yu‐Hsuan ; Chen, Kuan‐Chun ; Chien, Chun‐Ling ; Huang, Wen‐Tse ; Majewska, Natalia ; Kamiński, Mikołaj ; Mahlik, Sebastian ; Leniec, Grzegorz ; Mijowska, Ewa ; Huang, Sheng‐Lung ; Liu, Ru‐Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1633-6a40df5f638644f7b8fb30ef4a953519953dcc85d3286cc5086b0811ea31f7253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amplifiers</topic><topic>Broadband</topic><topic>broadband emission</topic><topic>Calcium</topic><topic>charge compensation</topic><topic>Communication</topic><topic>Compensation</topic><topic>crystal fiber</topic><topic>Crystal fibers</topic><topic>Doped crystals</topic><topic>garnet structure</topic><topic>Laser beam heating</topic><topic>Light emitting diodes</topic><topic>Near infrared radiation</topic><topic>near‐infrared phosphor</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Transmission loss</topic><topic>Water absorption</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsiao, Yu‐Hsuan</creatorcontrib><creatorcontrib>Chen, Kuan‐Chun</creatorcontrib><creatorcontrib>Chien, Chun‐Ling</creatorcontrib><creatorcontrib>Huang, Wen‐Tse</creatorcontrib><creatorcontrib>Majewska, Natalia</creatorcontrib><creatorcontrib>Kamiński, Mikołaj</creatorcontrib><creatorcontrib>Mahlik, Sebastian</creatorcontrib><creatorcontrib>Leniec, Grzegorz</creatorcontrib><creatorcontrib>Mijowska, Ewa</creatorcontrib><creatorcontrib>Huang, Sheng‐Lung</creatorcontrib><creatorcontrib>Liu, Ru‐Shi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsiao, Yu‐Hsuan</au><au>Chen, Kuan‐Chun</au><au>Chien, Chun‐Ling</au><au>Huang, Wen‐Tse</au><au>Majewska, Natalia</au><au>Kamiński, Mikołaj</au><au>Mahlik, Sebastian</au><au>Leniec, Grzegorz</au><au>Mijowska, Ewa</au><au>Huang, Sheng‐Lung</au><au>Liu, Ru‐Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers</atitle><jtitle>Advanced optical materials</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>12</volume><issue>32</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Near‐infrared‐II (NIR‐II) phosphors are extensively used as NIR phosphor‐converted light‐emitting diodes across various applications. Nonetheless, their application in fiber communication remains underexplored. Furthermore, efficiency challenges persist in developing broadband NIR crystal fiber amplifiers. A series of the Y3−yAl5−xO12:xCr,yCa2+ phosphors with boosted Cr4+ concentration via calcium charge compensation is synthesized, and the optimized sample is fabricated to crystal fibers to reveal the application of the NIR‐II phosphors to fiber communication. The fabricated Cr4+‐doped crystal fiber, exhibiting broadband Cr4+ emission within 1100–1600 nm, effectively covers the high‐transmission loss region caused by water absorption in the telecommunication band. Comprehensive characterization and analyses of the Cr4+ are discussed. Y2.84Al4.9O12:0.1Cr,0.16Ca2+ crystal fiber, fabricated through phosphor synthesis, pellets’ production, and the laser‐heated pedestal growth method, exhibits superior photoluminescence compared to the commercial Cr4+‐doped Y3Al5O12 crystal fiber. Here the potential of NIR‐II phosphors is highlighted in enhancing fiber communication and valuable insights for their future application are provided.
A broadband near‐infrared‐II phosphor, Y2.84AI4.9O12:0.1Cr,0.16Ca2+ (YAG:0.1Cr,0.16Ca), is optimally synthesized by the solid‐state method. YAG:0.1Cr,0.16Ca crystal fiber is sequentially fabricated by the laser‐heated pedestal growth method for light communication application. Future research should develop advanced broadband fiber amplifiers to enhance light communication.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401543</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1933-0355</orcidid><orcidid>https://orcid.org/0009-0006-2638-442X</orcidid><orcidid>https://orcid.org/0000-0002-0837-4344</orcidid><orcidid>https://orcid.org/0000-0002-1291-9052</orcidid><orcidid>https://orcid.org/0000-0001-6244-1555</orcidid><orcidid>https://orcid.org/0000-0002-7980-6992</orcidid><orcidid>https://orcid.org/0000-0002-9514-049X</orcidid><orcidid>https://orcid.org/0000-0003-2023-8756</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2024-11, Vol.12 (32), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3128088811 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Amplifiers Broadband broadband emission Calcium charge compensation Communication Compensation crystal fiber Crystal fibers Doped crystals garnet structure Laser beam heating Light emitting diodes Near infrared radiation near‐infrared phosphor Phosphors Photoluminescence Transmission loss Water absorption |
title | Broadband Near‐Infrared Cr4+‐Doped Garnet Phosphors through Divalent Calcium Charge Compensation for Advanced Crystal Fiber Amplifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20Near%E2%80%90Infrared%20Cr4+%E2%80%90Doped%20Garnet%20Phosphors%20through%20Divalent%20Calcium%20Charge%20Compensation%20for%20Advanced%20Crystal%20Fiber%20Amplifiers&rft.jtitle=Advanced%20optical%20materials&rft.au=Hsiao,%20Yu%E2%80%90Hsuan&rft.date=2024-11-01&rft.volume=12&rft.issue=32&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401543&rft_dat=%3Cproquest_wiley%3E3128088811%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128088811&rft_id=info:pmid/&rfr_iscdi=true |