exp: N-body integration using basis function expansions
ABSTRACT We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enab...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2022-03, Vol.510 (4), p.6201-6217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6217 |
---|---|
container_issue | 4 |
container_start_page | 6201 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 510 |
creator | Petersen, Michael S Weinberg, Martin D Katz, Neal |
description | ABSTRACT
We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps. |
doi_str_mv | 10.1093/mnras/stab3639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_3128027178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3639</oup_id><sourcerecordid>3128027178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavngOePKSdyWY_4k2KX1D0oudld92UFLuJOwnYf29s9OxphuF534GHsUuEBULFl7uYLC2pt45LXh2xGXIp8qKS8pjNALjItUI8ZWdEWwAoeSFnTIWv7iZ7zl37vs-a2IdNsn3TxmygJm4yZ6mhrB6iPxxH2EYaNzpnJ7X9oHDxO-fs7f7udfWYr18enla369xzwD7HUoNyXnttuQCppAugUEkRhC1q5UOlhatASG-hdFJq6zViDVj6wGUl-ZxdTb1daj-HQL3ZtkOK40vDsdBQjG16pBYT5VNLlEJtutTsbNobBPMjxxzkmD85Y-B6CrRD9x_7DQnjZtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128027178</pqid></control><display><type>article</type><title>exp: N-body integration using basis function expansions</title><source>Oxford Journals Open Access Collection</source><creator>Petersen, Michael S ; Weinberg, Martin D ; Katz, Neal</creator><creatorcontrib>Petersen, Michael S ; Weinberg, Martin D ; Katz, Neal</creatorcontrib><description>ABSTRACT
We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3639</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomical models ; Basis functions ; Force measurement ; Mass distribution ; Potential fields</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2022-03, Vol.510 (4), p.6201-6217</ispartof><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</citedby><cites>FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</cites><orcidid>0000-0003-1517-3935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27922,27923</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3639$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Petersen, Michael S</creatorcontrib><creatorcontrib>Weinberg, Martin D</creatorcontrib><creatorcontrib>Katz, Neal</creatorcontrib><title>exp: N-body integration using basis function expansions</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.</description><subject>Astronomical models</subject><subject>Basis functions</subject><subject>Force measurement</subject><subject>Mass distribution</subject><subject>Potential fields</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavngOePKSdyWY_4k2KX1D0oudld92UFLuJOwnYf29s9OxphuF534GHsUuEBULFl7uYLC2pt45LXh2xGXIp8qKS8pjNALjItUI8ZWdEWwAoeSFnTIWv7iZ7zl37vs-a2IdNsn3TxmygJm4yZ6mhrB6iPxxH2EYaNzpnJ7X9oHDxO-fs7f7udfWYr18enla369xzwD7HUoNyXnttuQCppAugUEkRhC1q5UOlhatASG-hdFJq6zViDVj6wGUl-ZxdTb1daj-HQL3ZtkOK40vDsdBQjG16pBYT5VNLlEJtutTsbNobBPMjxxzkmD85Y-B6CrRD9x_7DQnjZtI</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Petersen, Michael S</creator><creator>Weinberg, Martin D</creator><creator>Katz, Neal</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1517-3935</orcidid></search><sort><creationdate>20220301</creationdate><title>exp: N-body integration using basis function expansions</title><author>Petersen, Michael S ; Weinberg, Martin D ; Katz, Neal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomical models</topic><topic>Basis functions</topic><topic>Force measurement</topic><topic>Mass distribution</topic><topic>Potential fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Michael S</creatorcontrib><creatorcontrib>Weinberg, Martin D</creatorcontrib><creatorcontrib>Katz, Neal</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Petersen, Michael S</au><au>Weinberg, Martin D</au><au>Katz, Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>exp: N-body integration using basis function expansions</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>510</volume><issue>4</issue><spage>6201</spage><epage>6217</epage><pages>6201-6217</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3639</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1517-3935</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2022-03, Vol.510 (4), p.6201-6217 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_journals_3128027178 |
source | Oxford Journals Open Access Collection |
subjects | Astronomical models Basis functions Force measurement Mass distribution Potential fields |
title | exp: N-body integration using basis function expansions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=exp:%20N-body%20integration%20using%20basis%20function%20expansions&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Petersen,%20Michael%20S&rft.date=2022-03-01&rft.volume=510&rft.issue=4&rft.spage=6201&rft.epage=6217&rft.pages=6201-6217&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3639&rft_dat=%3Cproquest_TOX%3E3128027178%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128027178&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3639&rfr_iscdi=true |