exp: N-body integration using basis function expansions

ABSTRACT We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-03, Vol.510 (4), p.6201-6217
Hauptverfasser: Petersen, Michael S, Weinberg, Martin D, Katz, Neal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6217
container_issue 4
container_start_page 6201
container_title Monthly notices of the Royal Astronomical Society
container_volume 510
creator Petersen, Michael S
Weinberg, Martin D
Katz, Neal
description ABSTRACT We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.
doi_str_mv 10.1093/mnras/stab3639
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_journals_3128027178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stab3639</oup_id><sourcerecordid>3128027178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFavngOePKSdyWY_4k2KX1D0oudld92UFLuJOwnYf29s9OxphuF534GHsUuEBULFl7uYLC2pt45LXh2xGXIp8qKS8pjNALjItUI8ZWdEWwAoeSFnTIWv7iZ7zl37vs-a2IdNsn3TxmygJm4yZ6mhrB6iPxxH2EYaNzpnJ7X9oHDxO-fs7f7udfWYr18enla369xzwD7HUoNyXnttuQCppAugUEkRhC1q5UOlhatASG-hdFJq6zViDVj6wGUl-ZxdTb1daj-HQL3ZtkOK40vDsdBQjG16pBYT5VNLlEJtutTsbNobBPMjxxzkmD85Y-B6CrRD9x_7DQnjZtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128027178</pqid></control><display><type>article</type><title>exp: N-body integration using basis function expansions</title><source>Oxford Journals Open Access Collection</source><creator>Petersen, Michael S ; Weinberg, Martin D ; Katz, Neal</creator><creatorcontrib>Petersen, Michael S ; Weinberg, Martin D ; Katz, Neal</creatorcontrib><description>ABSTRACT We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stab3639</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomical models ; Basis functions ; Force measurement ; Mass distribution ; Potential fields</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2022-03, Vol.510 (4), p.6201-6217</ispartof><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2022</rights><rights>2022 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</citedby><cites>FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</cites><orcidid>0000-0003-1517-3935</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27922,27923</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stab3639$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Petersen, Michael S</creatorcontrib><creatorcontrib>Weinberg, Martin D</creatorcontrib><creatorcontrib>Katz, Neal</creatorcontrib><title>exp: N-body integration using basis function expansions</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.</description><subject>Astronomical models</subject><subject>Basis functions</subject><subject>Force measurement</subject><subject>Mass distribution</subject><subject>Potential fields</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFavngOePKSdyWY_4k2KX1D0oudld92UFLuJOwnYf29s9OxphuF534GHsUuEBULFl7uYLC2pt45LXh2xGXIp8qKS8pjNALjItUI8ZWdEWwAoeSFnTIWv7iZ7zl37vs-a2IdNsn3TxmygJm4yZ6mhrB6iPxxH2EYaNzpnJ7X9oHDxO-fs7f7udfWYr18enla369xzwD7HUoNyXnttuQCppAugUEkRhC1q5UOlhatASG-hdFJq6zViDVj6wGUl-ZxdTb1daj-HQL3ZtkOK40vDsdBQjG16pBYT5VNLlEJtutTsbNobBPMjxxzkmD85Y-B6CrRD9x_7DQnjZtI</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Petersen, Michael S</creator><creator>Weinberg, Martin D</creator><creator>Katz, Neal</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1517-3935</orcidid></search><sort><creationdate>20220301</creationdate><title>exp: N-body integration using basis function expansions</title><author>Petersen, Michael S ; Weinberg, Martin D ; Katz, Neal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-14807bc8c8a350676be071765e5a2f7ce985b9056ca04b668ac811f014ce36963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astronomical models</topic><topic>Basis functions</topic><topic>Force measurement</topic><topic>Mass distribution</topic><topic>Potential fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Michael S</creatorcontrib><creatorcontrib>Weinberg, Martin D</creatorcontrib><creatorcontrib>Katz, Neal</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Petersen, Michael S</au><au>Weinberg, Martin D</au><au>Katz, Neal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>exp: N-body integration using basis function expansions</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>510</volume><issue>4</issue><spage>6201</spage><epage>6217</epage><pages>6201-6217</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT We present the N-body simulation techniques implemented in the exp code. exp uses empirically chosen basis functions to expand the potential field of an ensemble of particles. Unlike other basis function expansions, the derived basis functions are adapted to an input mass distribution, enabling accurate expansion of highly non-spherical objects, such as Galactic discs. We measure the force accuracy in three models, one based on a spherical or aspherical halo, one based on an exponential disc, and one based on a bar-based disc model. We find that exp is as accurate as a direct-summation or tree-based calculation, and in some ways is better, while being considerably less computationally intensive. We discuss optimizing the computation of the basis function representation. We also detail numerical improvements for performing orbit integrations, including time-steps.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stab3639</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1517-3935</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2022-03, Vol.510 (4), p.6201-6217
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_journals_3128027178
source Oxford Journals Open Access Collection
subjects Astronomical models
Basis functions
Force measurement
Mass distribution
Potential fields
title exp: N-body integration using basis function expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=exp:%20N-body%20integration%20using%20basis%20function%20expansions&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Petersen,%20Michael%20S&rft.date=2022-03-01&rft.volume=510&rft.issue=4&rft.spage=6201&rft.epage=6217&rft.pages=6201-6217&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stab3639&rft_dat=%3Cproquest_TOX%3E3128027178%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128027178&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stab3639&rfr_iscdi=true