Frequency-bin entanglement-based quantum key distribution
Entanglement is an essential ingredient in many quantum communication protocols. In particular, entanglement can be exploited in quantum key distribution (QKD) to generate two correlated random bit strings whose randomness is guaranteed by the nonlocal property of quantum mechanics. Most of QKD prot...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tagliavacche, Noemi Borghi, Massimo Guarda, Giulia Ribezzo, Domenico Liscidini, Marco Bacco, Davide Galli, Matteo Bajoni, Daniele |
description | Entanglement is an essential ingredient in many quantum communication protocols. In particular, entanglement can be exploited in quantum key distribution (QKD) to generate two correlated random bit strings whose randomness is guaranteed by the nonlocal property of quantum mechanics. Most of QKD protocols tested to date rely on polarization and/or time-bin encoding. Despite compatibility with existing fiber-optic infrastructure and ease of manipulation with standard components, frequency-bin QKD have not yet been fully explored. Here we report the first demonstration of entanglement-based QKD using frequency-bin encoding. We implement the BBM92 protocol using photon pairs generated by two independent, high-finesse, ring resonators on a silicon photonic chip. We perform a passive basis selection scheme and simultaneously record sixteen projective measurements. A key finding is that frequency-bin encoding is sensitive to the random phase noise induced by thermal fluctuations of the environment. To correct for this effect, we developed a real-time adaptive phase rotation of the measurement basis, achieving stable transmission over a 26 km fiber spool with a secure key rate >= 4.5 bit/s. Our work introduces a new degree of freedom for the realization of entangled based QKD protocols in telecom networks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3128019951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3128019951</sourcerecordid><originalsourceid>FETCH-proquest_journals_31280199513</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdCtKLSxNzUuu1E3KzFNIzStJzEvPSc0FMnSTEotTUxQKSxPzSkpzFbJTKxVSMotLijKTSksy8_N4GFjTEnOKU3mhNDeDsptriLOHbkFRPtDE4pL4rPzSojygVLyxoZGFgaGlpamhMXGqAOLPN0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128019951</pqid></control><display><type>article</type><title>Frequency-bin entanglement-based quantum key distribution</title><source>Free E- Journals</source><creator>Tagliavacche, Noemi ; Borghi, Massimo ; Guarda, Giulia ; Ribezzo, Domenico ; Liscidini, Marco ; Bacco, Davide ; Galli, Matteo ; Bajoni, Daniele</creator><creatorcontrib>Tagliavacche, Noemi ; Borghi, Massimo ; Guarda, Giulia ; Ribezzo, Domenico ; Liscidini, Marco ; Bacco, Davide ; Galli, Matteo ; Bajoni, Daniele</creatorcontrib><description>Entanglement is an essential ingredient in many quantum communication protocols. In particular, entanglement can be exploited in quantum key distribution (QKD) to generate two correlated random bit strings whose randomness is guaranteed by the nonlocal property of quantum mechanics. Most of QKD protocols tested to date rely on polarization and/or time-bin encoding. Despite compatibility with existing fiber-optic infrastructure and ease of manipulation with standard components, frequency-bin QKD have not yet been fully explored. Here we report the first demonstration of entanglement-based QKD using frequency-bin encoding. We implement the BBM92 protocol using photon pairs generated by two independent, high-finesse, ring resonators on a silicon photonic chip. We perform a passive basis selection scheme and simultaneously record sixteen projective measurements. A key finding is that frequency-bin encoding is sensitive to the random phase noise induced by thermal fluctuations of the environment. To correct for this effect, we developed a real-time adaptive phase rotation of the measurement basis, achieving stable transmission over a 26 km fiber spool with a secure key rate >= 4.5 bit/s. Our work introduces a new degree of freedom for the realization of entangled based QKD protocols in telecom networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coding ; Fiber optics ; Noise measurement ; Noise sensitivity ; Phase noise ; Quantum cryptography ; Quantum entanglement ; Quantum mechanics ; Real time ; Standard components ; Time measurement</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tagliavacche, Noemi</creatorcontrib><creatorcontrib>Borghi, Massimo</creatorcontrib><creatorcontrib>Guarda, Giulia</creatorcontrib><creatorcontrib>Ribezzo, Domenico</creatorcontrib><creatorcontrib>Liscidini, Marco</creatorcontrib><creatorcontrib>Bacco, Davide</creatorcontrib><creatorcontrib>Galli, Matteo</creatorcontrib><creatorcontrib>Bajoni, Daniele</creatorcontrib><title>Frequency-bin entanglement-based quantum key distribution</title><title>arXiv.org</title><description>Entanglement is an essential ingredient in many quantum communication protocols. In particular, entanglement can be exploited in quantum key distribution (QKD) to generate two correlated random bit strings whose randomness is guaranteed by the nonlocal property of quantum mechanics. Most of QKD protocols tested to date rely on polarization and/or time-bin encoding. Despite compatibility with existing fiber-optic infrastructure and ease of manipulation with standard components, frequency-bin QKD have not yet been fully explored. Here we report the first demonstration of entanglement-based QKD using frequency-bin encoding. We implement the BBM92 protocol using photon pairs generated by two independent, high-finesse, ring resonators on a silicon photonic chip. We perform a passive basis selection scheme and simultaneously record sixteen projective measurements. A key finding is that frequency-bin encoding is sensitive to the random phase noise induced by thermal fluctuations of the environment. To correct for this effect, we developed a real-time adaptive phase rotation of the measurement basis, achieving stable transmission over a 26 km fiber spool with a secure key rate >= 4.5 bit/s. Our work introduces a new degree of freedom for the realization of entangled based QKD protocols in telecom networks.</description><subject>Coding</subject><subject>Fiber optics</subject><subject>Noise measurement</subject><subject>Noise sensitivity</subject><subject>Phase noise</subject><subject>Quantum cryptography</subject><subject>Quantum entanglement</subject><subject>Quantum mechanics</subject><subject>Real time</subject><subject>Standard components</subject><subject>Time measurement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdCtKLSxNzUuu1E3KzFNIzStJzEvPSc0FMnSTEotTUxQKSxPzSkpzFbJTKxVSMotLijKTSksy8_N4GFjTEnOKU3mhNDeDsptriLOHbkFRPtDE4pL4rPzSojygVLyxoZGFgaGlpamhMXGqAOLPN0Y</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Tagliavacche, Noemi</creator><creator>Borghi, Massimo</creator><creator>Guarda, Giulia</creator><creator>Ribezzo, Domenico</creator><creator>Liscidini, Marco</creator><creator>Bacco, Davide</creator><creator>Galli, Matteo</creator><creator>Bajoni, Daniele</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241114</creationdate><title>Frequency-bin entanglement-based quantum key distribution</title><author>Tagliavacche, Noemi ; Borghi, Massimo ; Guarda, Giulia ; Ribezzo, Domenico ; Liscidini, Marco ; Bacco, Davide ; Galli, Matteo ; Bajoni, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31280199513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coding</topic><topic>Fiber optics</topic><topic>Noise measurement</topic><topic>Noise sensitivity</topic><topic>Phase noise</topic><topic>Quantum cryptography</topic><topic>Quantum entanglement</topic><topic>Quantum mechanics</topic><topic>Real time</topic><topic>Standard components</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Tagliavacche, Noemi</creatorcontrib><creatorcontrib>Borghi, Massimo</creatorcontrib><creatorcontrib>Guarda, Giulia</creatorcontrib><creatorcontrib>Ribezzo, Domenico</creatorcontrib><creatorcontrib>Liscidini, Marco</creatorcontrib><creatorcontrib>Bacco, Davide</creatorcontrib><creatorcontrib>Galli, Matteo</creatorcontrib><creatorcontrib>Bajoni, Daniele</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tagliavacche, Noemi</au><au>Borghi, Massimo</au><au>Guarda, Giulia</au><au>Ribezzo, Domenico</au><au>Liscidini, Marco</au><au>Bacco, Davide</au><au>Galli, Matteo</au><au>Bajoni, Daniele</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Frequency-bin entanglement-based quantum key distribution</atitle><jtitle>arXiv.org</jtitle><date>2024-11-14</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Entanglement is an essential ingredient in many quantum communication protocols. In particular, entanglement can be exploited in quantum key distribution (QKD) to generate two correlated random bit strings whose randomness is guaranteed by the nonlocal property of quantum mechanics. Most of QKD protocols tested to date rely on polarization and/or time-bin encoding. Despite compatibility with existing fiber-optic infrastructure and ease of manipulation with standard components, frequency-bin QKD have not yet been fully explored. Here we report the first demonstration of entanglement-based QKD using frequency-bin encoding. We implement the BBM92 protocol using photon pairs generated by two independent, high-finesse, ring resonators on a silicon photonic chip. We perform a passive basis selection scheme and simultaneously record sixteen projective measurements. A key finding is that frequency-bin encoding is sensitive to the random phase noise induced by thermal fluctuations of the environment. To correct for this effect, we developed a real-time adaptive phase rotation of the measurement basis, achieving stable transmission over a 26 km fiber spool with a secure key rate >= 4.5 bit/s. Our work introduces a new degree of freedom for the realization of entangled based QKD protocols in telecom networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3128019951 |
source | Free E- Journals |
subjects | Coding Fiber optics Noise measurement Noise sensitivity Phase noise Quantum cryptography Quantum entanglement Quantum mechanics Real time Standard components Time measurement |
title | Frequency-bin entanglement-based quantum key distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Frequency-bin%20entanglement-based%20quantum%20key%20distribution&rft.jtitle=arXiv.org&rft.au=Tagliavacche,%20Noemi&rft.date=2024-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3128019951%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128019951&rft_id=info:pmid/&rfr_iscdi=true |