Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer
Abstract Motivation To better understand the molecular features of cancers, a comprehensive analysis using multi-omics data has been conducted. In addition, a pathway activity inference method has been developed to facilitate the integrative effects of multiple genes. In this respect, we have recent...
Gespeichert in:
Veröffentlicht in: | BIOINFORMATICS 2021-08, Vol.37 (16), p.2405-2413 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
To better understand the molecular features of cancers, a comprehensive analysis using multi-omics data has been conducted. In addition, a pathway activity inference method has been developed to facilitate the integrative effects of multiple genes. In this respect, we have recently proposed a novel integrative pathway activity inference approach, iDRW and demonstrated the effectiveness of the method with respect to dichotomizing two survival groups. However, there were several limitations, such as a lack of generality. In this study, we designed a directed gene–gene graph using pathway information by assigning interactions between genes in multiple layers of networks.
Results
As a proof-of-concept study, it was evaluated using three genomic profiles of urologic cancer patients. The proposed integrative approach achieved improved outcome prediction performances compared with a single genomic profile alone and other existing pathway activity inference methods. The integrative approach also identified common/cancer-specific candidate driver pathways as predictive prognostic features in urologic cancers. Furthermore, it provides better biological insights into the prioritized pathways and genes in an integrated view using a multi-layered gene–gene network. Our framework is not specifically designed for urologic cancers and can be generally applicable for various datasets.
Availability and implementation
iDRW is implemented as the R software package. The source codes are available at https://github.com/sykim122/iDRW.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1367-4811 1460-2059 |
DOI: | 10.1093/bioinformatics/btab086 |