On duo-max modules
The paper’s goal is to examine the Max-ring concept in the present. To achieve our aim, we’ll employ a novel notion called a dual module. Greater than the duo module provided by Ozcan and Harmanci is the duo-max-module. We established that a duo-maximal again max-module, Rduo Max-ring, has a direct...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 3229 |
creator | Hamid, Sufyan A. Abed, Majid Mohammed |
description | The paper’s goal is to examine the Max-ring concept in the present. To achieve our aim, we’ll employ a novel notion called a dual module. Greater than the duo module provided by Ozcan and Harmanci is the duo-max-module. We established that a duo-maximal again max-module, Rduo Max-ring, has a direct summand. Also, R is the maximum ring if every module M over R is semi-primitive. We looked at N as the maximum of the max-injective module and R as the duo-max ring. On the other hand, any nonzero element of M has an annihilator that is semimax. Ideally, M is a semi- duo-maximal module, and R is max-ring module. Finally, a number of definitions, attributes, and fresh findings have been presented together with some links between these types of Max-rings. |
doi_str_mv | 10.1063/5.0239731 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3127831695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127831695</sourcerecordid><originalsourceid>FETCH-LOGICAL-p631-27cb6fac3b04d42ecc661f3e2cc1bed28bc3275aac5197705fc96f9df535b4793</originalsourceid><addsrcrecordid>eNotj71qwzAYRUVpoW7aoX2CQLeCEn369GONJfQPAlkyZBOyLIFDbLmWDe3b1yWZ7nK4h0PII7AVMIVruWIcjUa4IgVICVQrUNekYMwIygUebsldzkfGuNG6LMjTrlvWU6Kt-1m2qZ5OId-Tm-hOOTxcdkH272_7zSfd7j6-Nq9b2isEyrWvVHQeKyZqwYP3SkHEwL2HKtS8rDxyLZ3zEmYVk9EbFU0dJcpKaIML8ny-7Yf0PYU82mOahm42WgSuSwRl5Ey9nKnsm9GNTepsPzStG34tMPufbKW9JOMfOQZGBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3127831695</pqid></control><display><type>conference_proceeding</type><title>On duo-max modules</title><source>AIP Journals Complete</source><creator>Hamid, Sufyan A. ; Abed, Majid Mohammed</creator><contributor>Banerjee, Jyoti Sekhar ; Albermany, Salah A. ; Obaid, Ahmed J.</contributor><creatorcontrib>Hamid, Sufyan A. ; Abed, Majid Mohammed ; Banerjee, Jyoti Sekhar ; Albermany, Salah A. ; Obaid, Ahmed J.</creatorcontrib><description>The paper’s goal is to examine the Max-ring concept in the present. To achieve our aim, we’ll employ a novel notion called a dual module. Greater than the duo module provided by Ozcan and Harmanci is the duo-max-module. We established that a duo-maximal again max-module, Rduo Max-ring, has a direct summand. Also, R is the maximum ring if every module M over R is semi-primitive. We looked at N as the maximum of the max-injective module and R as the duo-max ring. On the other hand, any nonzero element of M has an annihilator that is semimax. Ideally, M is a semi- duo-maximal module, and R is max-ring module. Finally, a number of definitions, attributes, and fresh findings have been presented together with some links between these types of Max-rings.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0239731</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Modules</subject><ispartof>AIP conference proceedings, 2024, Vol.3229 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0239731$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Banerjee, Jyoti Sekhar</contributor><contributor>Albermany, Salah A.</contributor><contributor>Obaid, Ahmed J.</contributor><creatorcontrib>Hamid, Sufyan A.</creatorcontrib><creatorcontrib>Abed, Majid Mohammed</creatorcontrib><title>On duo-max modules</title><title>AIP conference proceedings</title><description>The paper’s goal is to examine the Max-ring concept in the present. To achieve our aim, we’ll employ a novel notion called a dual module. Greater than the duo module provided by Ozcan and Harmanci is the duo-max-module. We established that a duo-maximal again max-module, Rduo Max-ring, has a direct summand. Also, R is the maximum ring if every module M over R is semi-primitive. We looked at N as the maximum of the max-injective module and R as the duo-max ring. On the other hand, any nonzero element of M has an annihilator that is semimax. Ideally, M is a semi- duo-maximal module, and R is max-ring module. Finally, a number of definitions, attributes, and fresh findings have been presented together with some links between these types of Max-rings.</description><subject>Modules</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotj71qwzAYRUVpoW7aoX2CQLeCEn369GONJfQPAlkyZBOyLIFDbLmWDe3b1yWZ7nK4h0PII7AVMIVruWIcjUa4IgVICVQrUNekYMwIygUebsldzkfGuNG6LMjTrlvWU6Kt-1m2qZ5OId-Tm-hOOTxcdkH272_7zSfd7j6-Nq9b2isEyrWvVHQeKyZqwYP3SkHEwL2HKtS8rDxyLZ3zEmYVk9EbFU0dJcpKaIML8ny-7Yf0PYU82mOahm42WgSuSwRl5Ey9nKnsm9GNTepsPzStG34tMPufbKW9JOMfOQZGBQ</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Hamid, Sufyan A.</creator><creator>Abed, Majid Mohammed</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20241113</creationdate><title>On duo-max modules</title><author>Hamid, Sufyan A. ; Abed, Majid Mohammed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p631-27cb6fac3b04d42ecc661f3e2cc1bed28bc3275aac5197705fc96f9df535b4793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamid, Sufyan A.</creatorcontrib><creatorcontrib>Abed, Majid Mohammed</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamid, Sufyan A.</au><au>Abed, Majid Mohammed</au><au>Banerjee, Jyoti Sekhar</au><au>Albermany, Salah A.</au><au>Obaid, Ahmed J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On duo-max modules</atitle><btitle>AIP conference proceedings</btitle><date>2024-11-13</date><risdate>2024</risdate><volume>3229</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper’s goal is to examine the Max-ring concept in the present. To achieve our aim, we’ll employ a novel notion called a dual module. Greater than the duo module provided by Ozcan and Harmanci is the duo-max-module. We established that a duo-maximal again max-module, Rduo Max-ring, has a direct summand. Also, R is the maximum ring if every module M over R is semi-primitive. We looked at N as the maximum of the max-injective module and R as the duo-max ring. On the other hand, any nonzero element of M has an annihilator that is semimax. Ideally, M is a semi- duo-maximal module, and R is max-ring module. Finally, a number of definitions, attributes, and fresh findings have been presented together with some links between these types of Max-rings.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0239731</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.3229 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3127831695 |
source | AIP Journals Complete |
subjects | Modules |
title | On duo-max modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A56%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20duo-max%20modules&rft.btitle=AIP%20conference%20proceedings&rft.au=Hamid,%20Sufyan%20A.&rft.date=2024-11-13&rft.volume=3229&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0239731&rft_dat=%3Cproquest_scita%3E3127831695%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127831695&rft_id=info:pmid/&rfr_iscdi=true |