FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients

Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate loc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on dependable and secure computing 2024-11, Vol.21 (6), p.5259-5274
Hauptverfasser: Mu, Xutong, Cheng, Ke, Shen, Yulong, Li, Xiaoxiao, Chang, Zhao, Zhang, Tao, Ma, Xindi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5274
container_issue 6
container_start_page 5259
container_title IEEE transactions on dependable and secure computing
container_volume 21
creator Mu, Xutong
Cheng, Ke
Shen, Yulong
Li, Xiaoxiao
Chang, Zhao
Zhang, Tao
Ma, Xindi
description Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.
doi_str_mv 10.1109/TDSC.2024.3372634
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3127756242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458320</ieee_id><sourcerecordid>3127756242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOKcfQPAh4HNnkkubxjfpNhU6BjqfQ5ZepWO2M2kFv70p24NPuXC__93xI-SWsxnnTD9s5u_FTDAhZwBKZCDPyIRryRPGeH4e61SmSaoVvyRXIexYJHMtJ2S9xGq-Kh7poq4b12DbU9tW9K3bDqGnsYne9ljREq1vm_aT_jSWzrFH14-_ld3HVDcEWuzHcLgmF7XdB7w5vVPysVxsipekXD-_Fk9l4oSWfSJlDkJlCuRWInArALSy2gpVCV2hhKrOmFMuQwGILsdaMxBcKO50lrItTMn9ce7Bd98Dht7susG3caWBiKk0E1JEih8p57sQPNbm4Jsv638NZ2b0ZkZvZvRmTt5i5u6YaRDxHy_TeDKDP2ZuZ3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127756242</pqid></control><display><type>article</type><title>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Mu, Xutong ; Cheng, Ke ; Shen, Yulong ; Li, Xiaoxiao ; Chang, Zhao ; Zhang, Tao ; Ma, Xindi</creator><creatorcontrib>Mu, Xutong ; Cheng, Ke ; Shen, Yulong ; Li, Xiaoxiao ; Chang, Zhao ; Zhang, Tao ; Ma, Xindi</creatorcontrib><description>Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2024.3372634</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Aggregates ; Clients ; Clustering ; Computational modeling ; Data models ; Datasets ; Federated learning ; Machine learning ; malicious clients ; Parameter robustness ; Parameter sensitivity ; poisoning attack ; Principal components analysis ; Robustness ; Servers ; Training</subject><ispartof>IEEE transactions on dependable and secure computing, 2024-11, Vol.21 (6), p.5259-5274</ispartof><rights>Copyright IEEE Computer Society 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</citedby><cites>FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</cites><orcidid>0000-0002-8448-705X ; 0000-0002-6846-7614 ; 0000-0002-0386-861X ; 0000-0001-7948-819X ; 0000-0002-0764-3741 ; 0000-0002-8833-0244 ; 0000-0001-5739-8038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10458320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Xutong</creatorcontrib><creatorcontrib>Cheng, Ke</creatorcontrib><creatorcontrib>Shen, Yulong</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Chang, Zhao</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Ma, Xindi</creatorcontrib><title>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.</description><subject>Aggregates</subject><subject>Clients</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Datasets</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>malicious clients</subject><subject>Parameter robustness</subject><subject>Parameter sensitivity</subject><subject>poisoning attack</subject><subject>Principal components analysis</subject><subject>Robustness</subject><subject>Servers</subject><subject>Training</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4MoOKcfQPAh4HNnkkubxjfpNhU6BjqfQ5ZepWO2M2kFv70p24NPuXC__93xI-SWsxnnTD9s5u_FTDAhZwBKZCDPyIRryRPGeH4e61SmSaoVvyRXIexYJHMtJ2S9xGq-Kh7poq4b12DbU9tW9K3bDqGnsYne9ljREq1vm_aT_jSWzrFH14-_ld3HVDcEWuzHcLgmF7XdB7w5vVPysVxsipekXD-_Fk9l4oSWfSJlDkJlCuRWInArALSy2gpVCV2hhKrOmFMuQwGILsdaMxBcKO50lrItTMn9ce7Bd98Dht7susG3caWBiKk0E1JEih8p57sQPNbm4Jsv638NZ2b0ZkZvZvRmTt5i5u6YaRDxHy_TeDKDP2ZuZ3U</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mu, Xutong</creator><creator>Cheng, Ke</creator><creator>Shen, Yulong</creator><creator>Li, Xiaoxiao</creator><creator>Chang, Zhao</creator><creator>Zhang, Tao</creator><creator>Ma, Xindi</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8448-705X</orcidid><orcidid>https://orcid.org/0000-0002-6846-7614</orcidid><orcidid>https://orcid.org/0000-0002-0386-861X</orcidid><orcidid>https://orcid.org/0000-0001-7948-819X</orcidid><orcidid>https://orcid.org/0000-0002-0764-3741</orcidid><orcidid>https://orcid.org/0000-0002-8833-0244</orcidid><orcidid>https://orcid.org/0000-0001-5739-8038</orcidid></search><sort><creationdate>20241101</creationdate><title>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</title><author>Mu, Xutong ; Cheng, Ke ; Shen, Yulong ; Li, Xiaoxiao ; Chang, Zhao ; Zhang, Tao ; Ma, Xindi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Clients</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Datasets</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>malicious clients</topic><topic>Parameter robustness</topic><topic>Parameter sensitivity</topic><topic>poisoning attack</topic><topic>Principal components analysis</topic><topic>Robustness</topic><topic>Servers</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Mu, Xutong</creatorcontrib><creatorcontrib>Cheng, Ke</creatorcontrib><creatorcontrib>Shen, Yulong</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Chang, Zhao</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Ma, Xindi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Xutong</au><au>Cheng, Ke</au><au>Shen, Yulong</au><au>Li, Xiaoxiao</au><au>Chang, Zhao</au><au>Zhang, Tao</au><au>Ma, Xindi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>5259</spage><epage>5274</epage><pages>5259-5274</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2024.3372634</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8448-705X</orcidid><orcidid>https://orcid.org/0000-0002-6846-7614</orcidid><orcidid>https://orcid.org/0000-0002-0386-861X</orcidid><orcidid>https://orcid.org/0000-0001-7948-819X</orcidid><orcidid>https://orcid.org/0000-0002-0764-3741</orcidid><orcidid>https://orcid.org/0000-0002-8833-0244</orcidid><orcidid>https://orcid.org/0000-0001-5739-8038</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2024-11, Vol.21 (6), p.5259-5274
issn 1545-5971
1941-0018
language eng
recordid cdi_proquest_journals_3127756242
source IEEE/IET Electronic Library (IEL)
subjects Aggregates
Clients
Clustering
Computational modeling
Data models
Datasets
Federated learning
Machine learning
malicious clients
Parameter robustness
Parameter sensitivity
poisoning attack
Principal components analysis
Robustness
Servers
Training
title FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FedDMC:%20Efficient%20and%20Robust%20Federated%20Learning%20via%20Detecting%20Malicious%20Clients&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Mu,%20Xutong&rft.date=2024-11-01&rft.volume=21&rft.issue=6&rft.spage=5259&rft.epage=5274&rft.pages=5259-5274&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2024.3372634&rft_dat=%3Cproquest_RIE%3E3127756242%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127756242&rft_id=info:pmid/&rft_ieee_id=10458320&rfr_iscdi=true