FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients
Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate loc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on dependable and secure computing 2024-11, Vol.21 (6), p.5259-5274 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5274 |
---|---|
container_issue | 6 |
container_start_page | 5259 |
container_title | IEEE transactions on dependable and secure computing |
container_volume | 21 |
creator | Mu, Xutong Cheng, Ke Shen, Yulong Li, Xiaoxiao Chang, Zhao Zhang, Tao Ma, Xindi |
description | Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity. |
doi_str_mv | 10.1109/TDSC.2024.3372634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3127756242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458320</ieee_id><sourcerecordid>3127756242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOKcfQPAh4HNnkkubxjfpNhU6BjqfQ5ZepWO2M2kFv70p24NPuXC__93xI-SWsxnnTD9s5u_FTDAhZwBKZCDPyIRryRPGeH4e61SmSaoVvyRXIexYJHMtJ2S9xGq-Kh7poq4b12DbU9tW9K3bDqGnsYne9ljREq1vm_aT_jSWzrFH14-_ld3HVDcEWuzHcLgmF7XdB7w5vVPysVxsipekXD-_Fk9l4oSWfSJlDkJlCuRWInArALSy2gpVCV2hhKrOmFMuQwGILsdaMxBcKO50lrItTMn9ce7Bd98Dht7susG3caWBiKk0E1JEih8p57sQPNbm4Jsv638NZ2b0ZkZvZvRmTt5i5u6YaRDxHy_TeDKDP2ZuZ3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127756242</pqid></control><display><type>article</type><title>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Mu, Xutong ; Cheng, Ke ; Shen, Yulong ; Li, Xiaoxiao ; Chang, Zhao ; Zhang, Tao ; Ma, Xindi</creator><creatorcontrib>Mu, Xutong ; Cheng, Ke ; Shen, Yulong ; Li, Xiaoxiao ; Chang, Zhao ; Zhang, Tao ; Ma, Xindi</creatorcontrib><description>Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2024.3372634</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Aggregates ; Clients ; Clustering ; Computational modeling ; Data models ; Datasets ; Federated learning ; Machine learning ; malicious clients ; Parameter robustness ; Parameter sensitivity ; poisoning attack ; Principal components analysis ; Robustness ; Servers ; Training</subject><ispartof>IEEE transactions on dependable and secure computing, 2024-11, Vol.21 (6), p.5259-5274</ispartof><rights>Copyright IEEE Computer Society 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</citedby><cites>FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</cites><orcidid>0000-0002-8448-705X ; 0000-0002-6846-7614 ; 0000-0002-0386-861X ; 0000-0001-7948-819X ; 0000-0002-0764-3741 ; 0000-0002-8833-0244 ; 0000-0001-5739-8038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458320$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10458320$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Xutong</creatorcontrib><creatorcontrib>Cheng, Ke</creatorcontrib><creatorcontrib>Shen, Yulong</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Chang, Zhao</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Ma, Xindi</creatorcontrib><title>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.</description><subject>Aggregates</subject><subject>Clients</subject><subject>Clustering</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Datasets</subject><subject>Federated learning</subject><subject>Machine learning</subject><subject>malicious clients</subject><subject>Parameter robustness</subject><subject>Parameter sensitivity</subject><subject>poisoning attack</subject><subject>Principal components analysis</subject><subject>Robustness</subject><subject>Servers</subject><subject>Training</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkFFLwzAQx4MoOKcfQPAh4HNnkkubxjfpNhU6BjqfQ5ZepWO2M2kFv70p24NPuXC__93xI-SWsxnnTD9s5u_FTDAhZwBKZCDPyIRryRPGeH4e61SmSaoVvyRXIexYJHMtJ2S9xGq-Kh7poq4b12DbU9tW9K3bDqGnsYne9ljREq1vm_aT_jSWzrFH14-_ld3HVDcEWuzHcLgmF7XdB7w5vVPysVxsipekXD-_Fk9l4oSWfSJlDkJlCuRWInArALSy2gpVCV2hhKrOmFMuQwGILsdaMxBcKO50lrItTMn9ce7Bd98Dht7susG3caWBiKk0E1JEih8p57sQPNbm4Jsv638NZ2b0ZkZvZvRmTt5i5u6YaRDxHy_TeDKDP2ZuZ3U</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Mu, Xutong</creator><creator>Cheng, Ke</creator><creator>Shen, Yulong</creator><creator>Li, Xiaoxiao</creator><creator>Chang, Zhao</creator><creator>Zhang, Tao</creator><creator>Ma, Xindi</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8448-705X</orcidid><orcidid>https://orcid.org/0000-0002-6846-7614</orcidid><orcidid>https://orcid.org/0000-0002-0386-861X</orcidid><orcidid>https://orcid.org/0000-0001-7948-819X</orcidid><orcidid>https://orcid.org/0000-0002-0764-3741</orcidid><orcidid>https://orcid.org/0000-0002-8833-0244</orcidid><orcidid>https://orcid.org/0000-0001-5739-8038</orcidid></search><sort><creationdate>20241101</creationdate><title>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</title><author>Mu, Xutong ; Cheng, Ke ; Shen, Yulong ; Li, Xiaoxiao ; Chang, Zhao ; Zhang, Tao ; Ma, Xindi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-4483276734b4e31a23397a9a27d29de43df60c7c6e23eec8ef90321271c9650b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Clients</topic><topic>Clustering</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Datasets</topic><topic>Federated learning</topic><topic>Machine learning</topic><topic>malicious clients</topic><topic>Parameter robustness</topic><topic>Parameter sensitivity</topic><topic>poisoning attack</topic><topic>Principal components analysis</topic><topic>Robustness</topic><topic>Servers</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Mu, Xutong</creatorcontrib><creatorcontrib>Cheng, Ke</creatorcontrib><creatorcontrib>Shen, Yulong</creatorcontrib><creatorcontrib>Li, Xiaoxiao</creatorcontrib><creatorcontrib>Chang, Zhao</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Ma, Xindi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Xutong</au><au>Cheng, Ke</au><au>Shen, Yulong</au><au>Li, Xiaoxiao</au><au>Chang, Zhao</au><au>Zhang, Tao</au><au>Ma, Xindi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>21</volume><issue>6</issue><spage>5259</spage><epage>5274</epage><pages>5259-5274</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Federated learning (FL) has gained popularity in the field of machine learning, which allows multiple participants to collaboratively learn a highly-accurate global model without exposing their sensitive data. However, FL is susceptible to poisoning attacks, in which malicious clients manipulate local model parameters to corrupt the global model. Existing FL frameworks based on detecting malicious clients suffer from unreasonable assumptions (e.g., clean validation datasets) or fail to balance robustness and efficiency. To address these deficiencies, we propose FedDMC, which implements robust federated learning by efficiently and precisely detecting malicious clients. Specifically, FedDMC first applies principal component analysis to reduce the dimensionality of the model parameters, which retains the primary parameter feature and reduces the computational overhead for subsequent clustering. Then, a binary tree-based clustering method with noise is designed to eliminate the effect of noisy points in the clustering process, facilitating accurate and efficient malicious client detection. Finally, we design a self-ensemble detection correction module that utilizes historical results via exponential moving averages to improve the robustness of malicious client detection. Extensive experiments conducted on three benchmark datasets demonstrate that FedDMC outperforms state-of-the-art methods in terms of detection precision, global model accuracy, and computational complexity.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2024.3372634</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8448-705X</orcidid><orcidid>https://orcid.org/0000-0002-6846-7614</orcidid><orcidid>https://orcid.org/0000-0002-0386-861X</orcidid><orcidid>https://orcid.org/0000-0001-7948-819X</orcidid><orcidid>https://orcid.org/0000-0002-0764-3741</orcidid><orcidid>https://orcid.org/0000-0002-8833-0244</orcidid><orcidid>https://orcid.org/0000-0001-5739-8038</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5971 |
ispartof | IEEE transactions on dependable and secure computing, 2024-11, Vol.21 (6), p.5259-5274 |
issn | 1545-5971 1941-0018 |
language | eng |
recordid | cdi_proquest_journals_3127756242 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Aggregates Clients Clustering Computational modeling Data models Datasets Federated learning Machine learning malicious clients Parameter robustness Parameter sensitivity poisoning attack Principal components analysis Robustness Servers Training |
title | FedDMC: Efficient and Robust Federated Learning via Detecting Malicious Clients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FedDMC:%20Efficient%20and%20Robust%20Federated%20Learning%20via%20Detecting%20Malicious%20Clients&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Mu,%20Xutong&rft.date=2024-11-01&rft.volume=21&rft.issue=6&rft.spage=5259&rft.epage=5274&rft.pages=5259-5274&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2024.3372634&rft_dat=%3Cproquest_RIE%3E3127756242%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127756242&rft_id=info:pmid/&rft_ieee_id=10458320&rfr_iscdi=true |