Electrode process regulation for high-efficiency zinc metal anodes

Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the perf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-11, Vol.12 (44), p.3169-3189
Hauptverfasser: Wu, Longkun, Zhu, Xinyan, Peng, Zhi, Zhang, Zekun, Zhao, Ningning, Li, Bin, Zhu, Jing, Dai, Lei, Wang, Ling, He, ZhangXing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3189
container_issue 44
container_start_page 3169
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Wu, Longkun
Zhu, Xinyan
Peng, Zhi
Zhang, Zekun
Zhao, Ningning
Li, Bin
Zhu, Jing
Dai, Lei
Wang, Ling
He, ZhangXing
description Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn 2+ ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn 2+ ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn 2+ in the electrolyte and surface homogenization at the anode. The desolvation of Zn 2+ before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn 2+ deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs. Regulation strategies for zinc anode ion deposition.
doi_str_mv 10.1039/d4ta05143b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127438899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127438899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-8a724872a155088b4ea8b3022e5b0e17e4da550263a79f75c3402b8a6d0601ad3</originalsourceid><addsrcrecordid>eNpFkEtLw0AQgBdRsNRevAsL3oTo7CPZ3WNb6wMKXuo5bDaTNiVN6m5yqL--q5U6lxmYbx58hNwyeGQgzFMpewspk6K4ICMOKSRKmuzyXGt9TSYhbCGGBsiMGZHZokHX-65EuvedwxCox_XQ2L7uWlp1nm7q9SbBqqpdja070O-6dXSHvW2obeNcuCFXlW0CTv7ymHy-LFbzt2T58fo-ny4TxxT0ibaKS624ZWkKWhcSrS4EcI5pAcgUytLGDs-EVaZSqRMSeKFtVkIGzJZiTO5Pe-OjXwOGPt92g2_jyVwwrqTQ2phIPZwo57sQPFb53tc76w85g_xHU_4sV9NfTbMI351gH9yZ-9cojtdVYqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127438899</pqid></control><display><type>article</type><title>Electrode process regulation for high-efficiency zinc metal anodes</title><source>Royal Society Of Chemistry Journals</source><creator>Wu, Longkun ; Zhu, Xinyan ; Peng, Zhi ; Zhang, Zekun ; Zhao, Ningning ; Li, Bin ; Zhu, Jing ; Dai, Lei ; Wang, Ling ; He, ZhangXing</creator><creatorcontrib>Wu, Longkun ; Zhu, Xinyan ; Peng, Zhi ; Zhang, Zekun ; Zhao, Ningning ; Li, Bin ; Zhu, Jing ; Dai, Lei ; Wang, Ling ; He, ZhangXing</creatorcontrib><description>Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn 2+ ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn 2+ ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn 2+ in the electrolyte and surface homogenization at the anode. The desolvation of Zn 2+ before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn 2+ deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs. Regulation strategies for zinc anode ion deposition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05143b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Chemical reactions ; Deposition ; Electric fields ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrolytes ; Energy storage ; Ions ; Performance enhancement ; Side reactions ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (44), p.3169-3189</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-8a724872a155088b4ea8b3022e5b0e17e4da550263a79f75c3402b8a6d0601ad3</cites><orcidid>0000-0001-9143-7096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Longkun</creatorcontrib><creatorcontrib>Zhu, Xinyan</creatorcontrib><creatorcontrib>Peng, Zhi</creatorcontrib><creatorcontrib>Zhang, Zekun</creatorcontrib><creatorcontrib>Zhao, Ningning</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Dai, Lei</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>He, ZhangXing</creatorcontrib><title>Electrode process regulation for high-efficiency zinc metal anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn 2+ ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn 2+ ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn 2+ in the electrolyte and surface homogenization at the anode. The desolvation of Zn 2+ before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn 2+ deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs. Regulation strategies for zinc anode ion deposition.</description><subject>Anodes</subject><subject>Chemical reactions</subject><subject>Deposition</subject><subject>Electric fields</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Ions</subject><subject>Performance enhancement</subject><subject>Side reactions</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AQgBdRsNRevAsL3oTo7CPZ3WNb6wMKXuo5bDaTNiVN6m5yqL--q5U6lxmYbx58hNwyeGQgzFMpewspk6K4ICMOKSRKmuzyXGt9TSYhbCGGBsiMGZHZokHX-65EuvedwxCox_XQ2L7uWlp1nm7q9SbBqqpdja070O-6dXSHvW2obeNcuCFXlW0CTv7ymHy-LFbzt2T58fo-ny4TxxT0ibaKS624ZWkKWhcSrS4EcI5pAcgUytLGDs-EVaZSqRMSeKFtVkIGzJZiTO5Pe-OjXwOGPt92g2_jyVwwrqTQ2phIPZwo57sQPFb53tc76w85g_xHU_4sV9NfTbMI351gH9yZ-9cojtdVYqE</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Wu, Longkun</creator><creator>Zhu, Xinyan</creator><creator>Peng, Zhi</creator><creator>Zhang, Zekun</creator><creator>Zhao, Ningning</creator><creator>Li, Bin</creator><creator>Zhu, Jing</creator><creator>Dai, Lei</creator><creator>Wang, Ling</creator><creator>He, ZhangXing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9143-7096</orcidid></search><sort><creationdate>20241112</creationdate><title>Electrode process regulation for high-efficiency zinc metal anodes</title><author>Wu, Longkun ; Zhu, Xinyan ; Peng, Zhi ; Zhang, Zekun ; Zhao, Ningning ; Li, Bin ; Zhu, Jing ; Dai, Lei ; Wang, Ling ; He, ZhangXing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-8a724872a155088b4ea8b3022e5b0e17e4da550263a79f75c3402b8a6d0601ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Chemical reactions</topic><topic>Deposition</topic><topic>Electric fields</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Ions</topic><topic>Performance enhancement</topic><topic>Side reactions</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Longkun</creatorcontrib><creatorcontrib>Zhu, Xinyan</creatorcontrib><creatorcontrib>Peng, Zhi</creatorcontrib><creatorcontrib>Zhang, Zekun</creatorcontrib><creatorcontrib>Zhao, Ningning</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Dai, Lei</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>He, ZhangXing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Longkun</au><au>Zhu, Xinyan</au><au>Peng, Zhi</au><au>Zhang, Zekun</au><au>Zhao, Ningning</au><au>Li, Bin</au><au>Zhu, Jing</au><au>Dai, Lei</au><au>Wang, Ling</au><au>He, ZhangXing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode process regulation for high-efficiency zinc metal anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-11-12</date><risdate>2024</risdate><volume>12</volume><issue>44</issue><spage>3169</spage><epage>3189</epage><pages>3169-3189</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn 2+ ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn 2+ ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn 2+ in the electrolyte and surface homogenization at the anode. The desolvation of Zn 2+ before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn 2+ deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs. Regulation strategies for zinc anode ion deposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05143b</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9143-7096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (44), p.3169-3189
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3127438899
source Royal Society Of Chemistry Journals
subjects Anodes
Chemical reactions
Deposition
Electric fields
Electrochemical analysis
Electrochemistry
Electrodes
Electrolytes
Energy storage
Ions
Performance enhancement
Side reactions
Zinc
title Electrode process regulation for high-efficiency zinc metal anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%20process%20regulation%20for%20high-efficiency%20zinc%20metal%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20Longkun&rft.date=2024-11-12&rft.volume=12&rft.issue=44&rft.spage=3169&rft.epage=3189&rft.pages=3169-3189&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05143b&rft_dat=%3Cproquest_cross%3E3127438899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127438899&rft_id=info:pmid/&rfr_iscdi=true