Electrode process regulation for high-efficiency zinc metal anodes
Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the perf...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-11, Vol.12 (44), p.3169-3189 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3189 |
---|---|
container_issue | 44 |
container_start_page | 3169 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Wu, Longkun Zhu, Xinyan Peng, Zhi Zhang, Zekun Zhao, Ningning Li, Bin Zhu, Jing Dai, Lei Wang, Ling He, ZhangXing |
description | Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn
2+
ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn
2+
ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn
2+
in the electrolyte and surface homogenization at the anode. The desolvation of Zn
2+
before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn
2+
deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs.
Regulation strategies for zinc anode ion deposition. |
doi_str_mv | 10.1039/d4ta05143b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127438899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127438899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-8a724872a155088b4ea8b3022e5b0e17e4da550263a79f75c3402b8a6d0601ad3</originalsourceid><addsrcrecordid>eNpFkEtLw0AQgBdRsNRevAsL3oTo7CPZ3WNb6wMKXuo5bDaTNiVN6m5yqL--q5U6lxmYbx58hNwyeGQgzFMpewspk6K4ICMOKSRKmuzyXGt9TSYhbCGGBsiMGZHZokHX-65EuvedwxCox_XQ2L7uWlp1nm7q9SbBqqpdja070O-6dXSHvW2obeNcuCFXlW0CTv7ymHy-LFbzt2T58fo-ny4TxxT0ibaKS624ZWkKWhcSrS4EcI5pAcgUytLGDs-EVaZSqRMSeKFtVkIGzJZiTO5Pe-OjXwOGPt92g2_jyVwwrqTQ2phIPZwo57sQPFb53tc76w85g_xHU_4sV9NfTbMI351gH9yZ-9cojtdVYqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127438899</pqid></control><display><type>article</type><title>Electrode process regulation for high-efficiency zinc metal anodes</title><source>Royal Society Of Chemistry Journals</source><creator>Wu, Longkun ; Zhu, Xinyan ; Peng, Zhi ; Zhang, Zekun ; Zhao, Ningning ; Li, Bin ; Zhu, Jing ; Dai, Lei ; Wang, Ling ; He, ZhangXing</creator><creatorcontrib>Wu, Longkun ; Zhu, Xinyan ; Peng, Zhi ; Zhang, Zekun ; Zhao, Ningning ; Li, Bin ; Zhu, Jing ; Dai, Lei ; Wang, Ling ; He, ZhangXing</creatorcontrib><description>Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn
2+
ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn
2+
ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn
2+
in the electrolyte and surface homogenization at the anode. The desolvation of Zn
2+
before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn
2+
deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs.
Regulation strategies for zinc anode ion deposition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta05143b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Chemical reactions ; Deposition ; Electric fields ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrolytes ; Energy storage ; Ions ; Performance enhancement ; Side reactions ; Zinc</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (44), p.3169-3189</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-8a724872a155088b4ea8b3022e5b0e17e4da550263a79f75c3402b8a6d0601ad3</cites><orcidid>0000-0001-9143-7096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Longkun</creatorcontrib><creatorcontrib>Zhu, Xinyan</creatorcontrib><creatorcontrib>Peng, Zhi</creatorcontrib><creatorcontrib>Zhang, Zekun</creatorcontrib><creatorcontrib>Zhao, Ningning</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Dai, Lei</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>He, ZhangXing</creatorcontrib><title>Electrode process regulation for high-efficiency zinc metal anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn
2+
ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn
2+
ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn
2+
in the electrolyte and surface homogenization at the anode. The desolvation of Zn
2+
before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn
2+
deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs.
Regulation strategies for zinc anode ion deposition.</description><subject>Anodes</subject><subject>Chemical reactions</subject><subject>Deposition</subject><subject>Electric fields</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Ions</subject><subject>Performance enhancement</subject><subject>Side reactions</subject><subject>Zinc</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLw0AQgBdRsNRevAsL3oTo7CPZ3WNb6wMKXuo5bDaTNiVN6m5yqL--q5U6lxmYbx58hNwyeGQgzFMpewspk6K4ICMOKSRKmuzyXGt9TSYhbCGGBsiMGZHZokHX-65EuvedwxCox_XQ2L7uWlp1nm7q9SbBqqpdja070O-6dXSHvW2obeNcuCFXlW0CTv7ymHy-LFbzt2T58fo-ny4TxxT0ibaKS624ZWkKWhcSrS4EcI5pAcgUytLGDs-EVaZSqRMSeKFtVkIGzJZiTO5Pe-OjXwOGPt92g2_jyVwwrqTQ2phIPZwo57sQPFb53tc76w85g_xHU_4sV9NfTbMI351gH9yZ-9cojtdVYqE</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Wu, Longkun</creator><creator>Zhu, Xinyan</creator><creator>Peng, Zhi</creator><creator>Zhang, Zekun</creator><creator>Zhao, Ningning</creator><creator>Li, Bin</creator><creator>Zhu, Jing</creator><creator>Dai, Lei</creator><creator>Wang, Ling</creator><creator>He, ZhangXing</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9143-7096</orcidid></search><sort><creationdate>20241112</creationdate><title>Electrode process regulation for high-efficiency zinc metal anodes</title><author>Wu, Longkun ; Zhu, Xinyan ; Peng, Zhi ; Zhang, Zekun ; Zhao, Ningning ; Li, Bin ; Zhu, Jing ; Dai, Lei ; Wang, Ling ; He, ZhangXing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-8a724872a155088b4ea8b3022e5b0e17e4da550263a79f75c3402b8a6d0601ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Chemical reactions</topic><topic>Deposition</topic><topic>Electric fields</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Ions</topic><topic>Performance enhancement</topic><topic>Side reactions</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Longkun</creatorcontrib><creatorcontrib>Zhu, Xinyan</creatorcontrib><creatorcontrib>Peng, Zhi</creatorcontrib><creatorcontrib>Zhang, Zekun</creatorcontrib><creatorcontrib>Zhao, Ningning</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Zhu, Jing</creatorcontrib><creatorcontrib>Dai, Lei</creatorcontrib><creatorcontrib>Wang, Ling</creatorcontrib><creatorcontrib>He, ZhangXing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Longkun</au><au>Zhu, Xinyan</au><au>Peng, Zhi</au><au>Zhang, Zekun</au><au>Zhao, Ningning</au><au>Li, Bin</au><au>Zhu, Jing</au><au>Dai, Lei</au><au>Wang, Ling</au><au>He, ZhangXing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrode process regulation for high-efficiency zinc metal anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-11-12</date><risdate>2024</risdate><volume>12</volume><issue>44</issue><spage>3169</spage><epage>3189</epage><pages>3169-3189</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Aqueous zinc-ion batteries (AZIBs) are hopeful energy storage devices due to their low cost and high energy density. However, the side reactions and the growth of dendrites at the anode limit the electrochemical performance of AZIBs. Optimizing the electrode process is crucial for enhancing the performance of AZIBs. Zn
2+
ions are transported between the cathode and anode through the electrolyte under the influence of an electric field. Zn
2+
ions undergo desolvation and are preferentially deposited at zincophilic sites. In recent years, significant progress has been made in improving the electrode process. This paper reviews the optimization strategies for each step of the electrode process. Initially, the challenges faced by anodes are presented in a categorized manner. Secondly, the electrode process is clarified, including the diffusion of Zn
2+
in the electrolyte and surface homogenization at the anode. The desolvation of Zn
2+
before deposition and the preferential deposition at the zincophilic sites are also explained. Lastly, the challenges and future perspectives of Zn
2+
deposition in AZIBs are addressed. It is expected that this review will provide effective strategies for constructing high-performance AZIBs.
Regulation strategies for zinc anode ion deposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta05143b</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9143-7096</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (44), p.3169-3189 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3127438899 |
source | Royal Society Of Chemistry Journals |
subjects | Anodes Chemical reactions Deposition Electric fields Electrochemical analysis Electrochemistry Electrodes Electrolytes Energy storage Ions Performance enhancement Side reactions Zinc |
title | Electrode process regulation for high-efficiency zinc metal anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrode%20process%20regulation%20for%20high-efficiency%20zinc%20metal%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20Longkun&rft.date=2024-11-12&rft.volume=12&rft.issue=44&rft.spage=3169&rft.epage=3189&rft.pages=3169-3189&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta05143b&rft_dat=%3Cproquest_cross%3E3127438899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127438899&rft_id=info:pmid/&rfr_iscdi=true |