Catalytic kinetic growth of a half-metallic hexagonal boron nitride-graphene lateral heterostructure using transition metal single-atom catalysts on Rh(111)

Deciphering the precise catalytic growth mechanism of atomically thin graphene-based lateral heterostructures is of great interest in low-dimensional physics and materials. Here, based on first-principles calculations and extensive screenings, we reveal that the deposited transition metal atoms (TM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-11, Vol.12 (44), p.30498-30507
Hauptverfasser: Zhu, Yandi, Li, Weihu, Ren, Xiaoyan, Zhang, Lili, Zhao, Xingju, Li, Shunfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30507
container_issue 44
container_start_page 30498
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Zhu, Yandi
Li, Weihu
Ren, Xiaoyan
Zhang, Lili
Zhao, Xingju
Li, Shunfang
description Deciphering the precise catalytic growth mechanism of atomically thin graphene-based lateral heterostructures is of great interest in low-dimensional physics and materials. Here, based on first-principles calculations and extensive screenings, we reveal that the deposited transition metal atoms (TM = Mn, Zr, Nb, Mo, Hf, Ta, and W), particularly Mo, act as single-atom catalysts (SACs) to effectively promote C adatom dimerization both energetically and kinetically on a C-dimer-unpreferred Rh(111) substrate. Meanwhile, the TM-SAC increases the stability of the boron-nitride (BN) dimer, which promotes rapid growth of a hexagonal boron nitride-graphene (h-BN-G) lateral heterostructure. Specifically, taking TM = Mo as a typical example, we demonstrate that the Mo–C(BN) couplings weaken the C(BN)-substrate interactions, which sharply reduces the kinetic barriers for both C and BN nucleation and migration in the initial stage of growing the h-BN-G lateral heterostructure on Rh(111). Interestingly, Mo-SAC can dynamically involve and migrate out of the h-BN-G interface during the growth processes for C 2 dimers as feeding blocks. Moreover, the presence of Mo-SAC can effectively tune the patching boundary of the 1D h-BN-G heterostructure, i.e. , from C–N to C–B linking with half-metallicity. The present findings provide significantly new insights into controllable catalytic growth of two-dimensional (2D) lateral heterostructures with various important potential applications, such as transport in spintronic devices.
doi_str_mv 10.1039/D4TA05741D
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127432971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127432971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-df1cdede012572bbc47084049371bd929db38027149dc5499d8844c8771757023</originalsourceid><addsrcrecordid>eNpFUU1LAzEQDaJg0V78BQEvKqwm2WyTHEvrFxQEqeclm2R3U7ebmmTR_hd_rGkrOpc3zHvzmMcAcIHRLUa5uJvT5RQVjOL5ERgRVKCMUTE5_us5PwXjEFYoFUdoIsQIfM9klN02WgXfbW922Hj3GVvoaihhK7s6W5sk6RLTmi_ZuF52sHLe9bC30VttssbLTWt6AzsZjU90axK6EP2g4uANHILtGxi97IONNm3uLeFu2plMRreGan9HiAEm-rW9whhfn4OTWnbBjH_xDLw93C9nT9ni5fF5Nl1kClMeM11jpY02CJOCkapSlCFOERU5w5UWROgq54gwTIVWBRVCc06p4oxhVjBE8jNwefDdePcxmBDLlRt8yhnKHBNGcyIYTqqbg0qlaMGbutx4u5Z-W2JU7h5Q_j8g_wE1Lnm_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127432971</pqid></control><display><type>article</type><title>Catalytic kinetic growth of a half-metallic hexagonal boron nitride-graphene lateral heterostructure using transition metal single-atom catalysts on Rh(111)</title><source>Royal Society Of Chemistry Journals</source><creator>Zhu, Yandi ; Li, Weihu ; Ren, Xiaoyan ; Zhang, Lili ; Zhao, Xingju ; Li, Shunfang</creator><creatorcontrib>Zhu, Yandi ; Li, Weihu ; Ren, Xiaoyan ; Zhang, Lili ; Zhao, Xingju ; Li, Shunfang</creatorcontrib><description>Deciphering the precise catalytic growth mechanism of atomically thin graphene-based lateral heterostructures is of great interest in low-dimensional physics and materials. Here, based on first-principles calculations and extensive screenings, we reveal that the deposited transition metal atoms (TM = Mn, Zr, Nb, Mo, Hf, Ta, and W), particularly Mo, act as single-atom catalysts (SACs) to effectively promote C adatom dimerization both energetically and kinetically on a C-dimer-unpreferred Rh(111) substrate. Meanwhile, the TM-SAC increases the stability of the boron-nitride (BN) dimer, which promotes rapid growth of a hexagonal boron nitride-graphene (h-BN-G) lateral heterostructure. Specifically, taking TM = Mo as a typical example, we demonstrate that the Mo–C(BN) couplings weaken the C(BN)-substrate interactions, which sharply reduces the kinetic barriers for both C and BN nucleation and migration in the initial stage of growing the h-BN-G lateral heterostructure on Rh(111). Interestingly, Mo-SAC can dynamically involve and migrate out of the h-BN-G interface during the growth processes for C 2 dimers as feeding blocks. Moreover, the presence of Mo-SAC can effectively tune the patching boundary of the 1D h-BN-G heterostructure, i.e. , from C–N to C–B linking with half-metallicity. The present findings provide significantly new insights into controllable catalytic growth of two-dimensional (2D) lateral heterostructures with various important potential applications, such as transport in spintronic devices.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D4TA05741D</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Boron ; Boron nitride ; Catalysts ; Controllability ; Couplings ; Dimerization ; Dimers ; First principles ; Graphene ; Heterostructures ; Metallicity ; Nucleation ; Rhodium ; Single atom catalysts ; Substrates ; Transition metals ; Zirconium</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (44), p.30498-30507</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-df1cdede012572bbc47084049371bd929db38027149dc5499d8844c8771757023</cites><orcidid>0000-0002-4658-5943 ; 0000-0003-2775-0189 ; 0000-0003-4661-6188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhu, Yandi</creatorcontrib><creatorcontrib>Li, Weihu</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Zhao, Xingju</creatorcontrib><creatorcontrib>Li, Shunfang</creatorcontrib><title>Catalytic kinetic growth of a half-metallic hexagonal boron nitride-graphene lateral heterostructure using transition metal single-atom catalysts on Rh(111)</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Deciphering the precise catalytic growth mechanism of atomically thin graphene-based lateral heterostructures is of great interest in low-dimensional physics and materials. Here, based on first-principles calculations and extensive screenings, we reveal that the deposited transition metal atoms (TM = Mn, Zr, Nb, Mo, Hf, Ta, and W), particularly Mo, act as single-atom catalysts (SACs) to effectively promote C adatom dimerization both energetically and kinetically on a C-dimer-unpreferred Rh(111) substrate. Meanwhile, the TM-SAC increases the stability of the boron-nitride (BN) dimer, which promotes rapid growth of a hexagonal boron nitride-graphene (h-BN-G) lateral heterostructure. Specifically, taking TM = Mo as a typical example, we demonstrate that the Mo–C(BN) couplings weaken the C(BN)-substrate interactions, which sharply reduces the kinetic barriers for both C and BN nucleation and migration in the initial stage of growing the h-BN-G lateral heterostructure on Rh(111). Interestingly, Mo-SAC can dynamically involve and migrate out of the h-BN-G interface during the growth processes for C 2 dimers as feeding blocks. Moreover, the presence of Mo-SAC can effectively tune the patching boundary of the 1D h-BN-G heterostructure, i.e. , from C–N to C–B linking with half-metallicity. The present findings provide significantly new insights into controllable catalytic growth of two-dimensional (2D) lateral heterostructures with various important potential applications, such as transport in spintronic devices.</description><subject>Boron</subject><subject>Boron nitride</subject><subject>Catalysts</subject><subject>Controllability</subject><subject>Couplings</subject><subject>Dimerization</subject><subject>Dimers</subject><subject>First principles</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Metallicity</subject><subject>Nucleation</subject><subject>Rhodium</subject><subject>Single atom catalysts</subject><subject>Substrates</subject><subject>Transition metals</subject><subject>Zirconium</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFUU1LAzEQDaJg0V78BQEvKqwm2WyTHEvrFxQEqeclm2R3U7ebmmTR_hd_rGkrOpc3zHvzmMcAcIHRLUa5uJvT5RQVjOL5ERgRVKCMUTE5_us5PwXjEFYoFUdoIsQIfM9klN02WgXfbW922Hj3GVvoaihhK7s6W5sk6RLTmi_ZuF52sHLe9bC30VttssbLTWt6AzsZjU90axK6EP2g4uANHILtGxi97IONNm3uLeFu2plMRreGan9HiAEm-rW9whhfn4OTWnbBjH_xDLw93C9nT9ni5fF5Nl1kClMeM11jpY02CJOCkapSlCFOERU5w5UWROgq54gwTIVWBRVCc06p4oxhVjBE8jNwefDdePcxmBDLlRt8yhnKHBNGcyIYTqqbg0qlaMGbutx4u5Z-W2JU7h5Q_j8g_wE1Lnm_</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Zhu, Yandi</creator><creator>Li, Weihu</creator><creator>Ren, Xiaoyan</creator><creator>Zhang, Lili</creator><creator>Zhao, Xingju</creator><creator>Li, Shunfang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4658-5943</orcidid><orcidid>https://orcid.org/0000-0003-2775-0189</orcidid><orcidid>https://orcid.org/0000-0003-4661-6188</orcidid></search><sort><creationdate>20241112</creationdate><title>Catalytic kinetic growth of a half-metallic hexagonal boron nitride-graphene lateral heterostructure using transition metal single-atom catalysts on Rh(111)</title><author>Zhu, Yandi ; Li, Weihu ; Ren, Xiaoyan ; Zhang, Lili ; Zhao, Xingju ; Li, Shunfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-df1cdede012572bbc47084049371bd929db38027149dc5499d8844c8771757023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boron</topic><topic>Boron nitride</topic><topic>Catalysts</topic><topic>Controllability</topic><topic>Couplings</topic><topic>Dimerization</topic><topic>Dimers</topic><topic>First principles</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Metallicity</topic><topic>Nucleation</topic><topic>Rhodium</topic><topic>Single atom catalysts</topic><topic>Substrates</topic><topic>Transition metals</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yandi</creatorcontrib><creatorcontrib>Li, Weihu</creatorcontrib><creatorcontrib>Ren, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Lili</creatorcontrib><creatorcontrib>Zhao, Xingju</creatorcontrib><creatorcontrib>Li, Shunfang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yandi</au><au>Li, Weihu</au><au>Ren, Xiaoyan</au><au>Zhang, Lili</au><au>Zhao, Xingju</au><au>Li, Shunfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic kinetic growth of a half-metallic hexagonal boron nitride-graphene lateral heterostructure using transition metal single-atom catalysts on Rh(111)</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-11-12</date><risdate>2024</risdate><volume>12</volume><issue>44</issue><spage>30498</spage><epage>30507</epage><pages>30498-30507</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Deciphering the precise catalytic growth mechanism of atomically thin graphene-based lateral heterostructures is of great interest in low-dimensional physics and materials. Here, based on first-principles calculations and extensive screenings, we reveal that the deposited transition metal atoms (TM = Mn, Zr, Nb, Mo, Hf, Ta, and W), particularly Mo, act as single-atom catalysts (SACs) to effectively promote C adatom dimerization both energetically and kinetically on a C-dimer-unpreferred Rh(111) substrate. Meanwhile, the TM-SAC increases the stability of the boron-nitride (BN) dimer, which promotes rapid growth of a hexagonal boron nitride-graphene (h-BN-G) lateral heterostructure. Specifically, taking TM = Mo as a typical example, we demonstrate that the Mo–C(BN) couplings weaken the C(BN)-substrate interactions, which sharply reduces the kinetic barriers for both C and BN nucleation and migration in the initial stage of growing the h-BN-G lateral heterostructure on Rh(111). Interestingly, Mo-SAC can dynamically involve and migrate out of the h-BN-G interface during the growth processes for C 2 dimers as feeding blocks. Moreover, the presence of Mo-SAC can effectively tune the patching boundary of the 1D h-BN-G heterostructure, i.e. , from C–N to C–B linking with half-metallicity. The present findings provide significantly new insights into controllable catalytic growth of two-dimensional (2D) lateral heterostructures with various important potential applications, such as transport in spintronic devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4TA05741D</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4658-5943</orcidid><orcidid>https://orcid.org/0000-0003-2775-0189</orcidid><orcidid>https://orcid.org/0000-0003-4661-6188</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-11, Vol.12 (44), p.30498-30507
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3127432971
source Royal Society Of Chemistry Journals
subjects Boron
Boron nitride
Catalysts
Controllability
Couplings
Dimerization
Dimers
First principles
Graphene
Heterostructures
Metallicity
Nucleation
Rhodium
Single atom catalysts
Substrates
Transition metals
Zirconium
title Catalytic kinetic growth of a half-metallic hexagonal boron nitride-graphene lateral heterostructure using transition metal single-atom catalysts on Rh(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20kinetic%20growth%20of%20a%20half-metallic%20hexagonal%20boron%20nitride-graphene%20lateral%20heterostructure%20using%20transition%20metal%20single-atom%20catalysts%20on%20Rh(111)&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Zhu,%20Yandi&rft.date=2024-11-12&rft.volume=12&rft.issue=44&rft.spage=30498&rft.epage=30507&rft.pages=30498-30507&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D4TA05741D&rft_dat=%3Cproquest_cross%3E3127432971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127432971&rft_id=info:pmid/&rfr_iscdi=true