Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning
Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Demirhan, Umut Alkhateeb, Ahmed |
description | Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3127424242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127424242</sourcerecordid><originalsourceid>FETCH-proquest_journals_31274242423</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNBa0BnNaJdiJNSiP1rKpNccsZmaGen1M-gB4lucxTl8I-JQxgJvGVI6Ia4xre_7dBHTKGIOOWSS3zoh75Cf1ikICUfkHVyV7qoVJMgfXsINVnAxqCGvUFpRi5JboSS8hW1gz8tGSIQdci2HoxkZ17wz6P44JfNNdk633lOrV4_GFq3qtRxUwQIah_Q79l_1AakQPZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127424242</pqid></control><display><type>article</type><title>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</title><source>Free E- Journals</source><creator>Demirhan, Umut ; Alkhateeb, Ahmed</creator><creatorcontrib>Demirhan, Umut ; Alkhateeb, Ahmed</creatorcontrib><description>Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Machine learning ; Radar beams ; Radar data</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Demirhan, Umut</creatorcontrib><creatorcontrib>Alkhateeb, Ahmed</creatorcontrib><title>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</title><title>arXiv.org</title><description>Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.</description><subject>Deep learning</subject><subject>Machine learning</subject><subject>Radar beams</subject><subject>Radar data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNBa0BnNaJdiJNSiP1rKpNccsZmaGen1M-gB4lucxTl8I-JQxgJvGVI6Ia4xre_7dBHTKGIOOWSS3zoh75Cf1ikICUfkHVyV7qoVJMgfXsINVnAxqCGvUFpRi5JboSS8hW1gz8tGSIQdci2HoxkZ17wz6P44JfNNdk633lOrV4_GFq3qtRxUwQIah_Q79l_1AakQPZw</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Demirhan, Umut</creator><creator>Alkhateeb, Ahmed</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241110</creationdate><title>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</title><author>Demirhan, Umut ; Alkhateeb, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31274242423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Machine learning</topic><topic>Radar beams</topic><topic>Radar data</topic><toplevel>online_resources</toplevel><creatorcontrib>Demirhan, Umut</creatorcontrib><creatorcontrib>Alkhateeb, Ahmed</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirhan, Umut</au><au>Alkhateeb, Ahmed</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-11-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3127424242 |
source | Free E- Journals |
subjects | Deep learning Machine learning Radar beams Radar data |
title | Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enabling%20ISAC%20in%20Real%20World:%20Beam-Based%20User%20Identification%20with%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Demirhan,%20Umut&rft.date=2024-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3127424242%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127424242&rft_id=info:pmid/&rfr_iscdi=true |