Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning

Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Demirhan, Umut, Alkhateeb, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Demirhan, Umut
Alkhateeb, Ahmed
description Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3127424242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127424242</sourcerecordid><originalsourceid>FETCH-proquest_journals_31274242423</originalsourceid><addsrcrecordid>eNqNjM0KgkAURocgSMp3uNBa0BnNaJdiJNSiP1rKpNccsZmaGen1M-gB4lucxTl8I-JQxgJvGVI6Ia4xre_7dBHTKGIOOWSS3zoh75Cf1ikICUfkHVyV7qoVJMgfXsINVnAxqCGvUFpRi5JboSS8hW1gz8tGSIQdci2HoxkZ17wz6P44JfNNdk633lOrV4_GFq3qtRxUwQIah_Q79l_1AakQPZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127424242</pqid></control><display><type>article</type><title>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</title><source>Free E- Journals</source><creator>Demirhan, Umut ; Alkhateeb, Ahmed</creator><creatorcontrib>Demirhan, Umut ; Alkhateeb, Ahmed</creatorcontrib><description>Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deep learning ; Machine learning ; Radar beams ; Radar data</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Demirhan, Umut</creatorcontrib><creatorcontrib>Alkhateeb, Ahmed</creatorcontrib><title>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</title><title>arXiv.org</title><description>Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.</description><subject>Deep learning</subject><subject>Machine learning</subject><subject>Radar beams</subject><subject>Radar data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0KgkAURocgSMp3uNBa0BnNaJdiJNSiP1rKpNccsZmaGen1M-gB4lucxTl8I-JQxgJvGVI6Ia4xre_7dBHTKGIOOWSS3zoh75Cf1ikICUfkHVyV7qoVJMgfXsINVnAxqCGvUFpRi5JboSS8hW1gz8tGSIQdci2HoxkZ17wz6P44JfNNdk633lOrV4_GFq3qtRxUwQIah_Q79l_1AakQPZw</recordid><startdate>20241110</startdate><enddate>20241110</enddate><creator>Demirhan, Umut</creator><creator>Alkhateeb, Ahmed</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241110</creationdate><title>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</title><author>Demirhan, Umut ; Alkhateeb, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31274242423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Machine learning</topic><topic>Radar beams</topic><topic>Radar data</topic><toplevel>online_resources</toplevel><creatorcontrib>Demirhan, Umut</creatorcontrib><creatorcontrib>Alkhateeb, Ahmed</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirhan, Umut</au><au>Alkhateeb, Ahmed</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2024-11-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Leveraging perception from radar data can assist multiple communication tasks, especially in highly-mobile and large-scale MIMO systems. One particular challenge, however, is how to distinguish the communication user (object) from the other mobile objects in the sensing scene. This paper formulates this \textit{user identification} problem and develops two solutions, a baseline model-based solution that maps the objects angles from the radar scene to communication beams and a scalable deep learning solution that is agnostic to the number of candidate objects. Using the DeepSense 6G dataset, which have real-world measurements, the developed deep learning approach achieves more than \(93.4\%\) communication user identification accuracy, highlighting a promising path for enabling integrated radar-communication applications in the real world.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_3127424242
source Free E- Journals
subjects Deep learning
Machine learning
Radar beams
Radar data
title Enabling ISAC in Real World: Beam-Based User Identification with Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enabling%20ISAC%20in%20Real%20World:%20Beam-Based%20User%20Identification%20with%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Demirhan,%20Umut&rft.date=2024-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3127424242%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127424242&rft_id=info:pmid/&rfr_iscdi=true