A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks

This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Chia Xin Liang, Tian, Pu, Yin, Caitlyn Heqi, Yao Yua, An-Hou, Wei, Li, Ming, Wang, Tianyang, Bi, Ziqian, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chia Xin Liang
Tian, Pu
Yin, Caitlyn Heqi
Yao Yua
An-Hou, Wei
Li, Ming
Wang, Tianyang
Bi, Ziqian
Liu, Ming
description This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3127422138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127422138</sourcerecordid><originalsourceid>FETCH-proquest_journals_31274221383</originalsourceid><addsrcrecordid>eNqNjk0LgkAURYcgSMr_8KC1oDOZbkP6WOQqaRcy4MvGdMbmOUL_PhfRus09F85d3BnzuBBRkG44XzCfqAnDkG8THsfCY7cdZKbrLT5QkxoRLs6O-AapKzg6VSEMBnLXDqozlWzhLG2NU-rayankpsKWQGm4KlJGBz9TSHrSis3vsiX0v1yy9WFfZKegt-blkIayMc7qSZUi4sn0MBKp-G_1AaX2QwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127422138</pqid></control><display><type>article</type><title>A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks</title><source>Free E- Journals</source><creator>Chia Xin Liang ; Tian, Pu ; Yin, Caitlyn Heqi ; Yao Yua ; An-Hou, Wei ; Li, Ming ; Wang, Tianyang ; Bi, Ziqian ; Liu, Ming</creator><creatorcontrib>Chia Xin Liang ; Tian, Pu ; Yin, Caitlyn Heqi ; Yao Yua ; An-Hou, Wei ; Li, Ming ; Wang, Tianyang ; Bi, Ziqian ; Liu, Ming</creatorcontrib><description>This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Audio data ; Computer vision ; Image enhancement ; Large language models ; Natural language processing ; Visual fields</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chia Xin Liang</creatorcontrib><creatorcontrib>Tian, Pu</creatorcontrib><creatorcontrib>Yin, Caitlyn Heqi</creatorcontrib><creatorcontrib>Yao Yua</creatorcontrib><creatorcontrib>An-Hou, Wei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Tianyang</creatorcontrib><creatorcontrib>Bi, Ziqian</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks</title><title>arXiv.org</title><description>This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.</description><subject>Audio data</subject><subject>Computer vision</subject><subject>Image enhancement</subject><subject>Large language models</subject><subject>Natural language processing</subject><subject>Visual fields</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjk0LgkAURYcgSMr_8KC1oDOZbkP6WOQqaRcy4MvGdMbmOUL_PhfRus09F85d3BnzuBBRkG44XzCfqAnDkG8THsfCY7cdZKbrLT5QkxoRLs6O-AapKzg6VSEMBnLXDqozlWzhLG2NU-rayankpsKWQGm4KlJGBz9TSHrSis3vsiX0v1yy9WFfZKegt-blkIayMc7qSZUi4sn0MBKp-G_1AaX2QwA</recordid><startdate>20241208</startdate><enddate>20241208</enddate><creator>Chia Xin Liang</creator><creator>Tian, Pu</creator><creator>Yin, Caitlyn Heqi</creator><creator>Yao Yua</creator><creator>An-Hou, Wei</creator><creator>Li, Ming</creator><creator>Wang, Tianyang</creator><creator>Bi, Ziqian</creator><creator>Liu, Ming</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241208</creationdate><title>A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks</title><author>Chia Xin Liang ; Tian, Pu ; Yin, Caitlyn Heqi ; Yao Yua ; An-Hou, Wei ; Li, Ming ; Wang, Tianyang ; Bi, Ziqian ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31274221383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Audio data</topic><topic>Computer vision</topic><topic>Image enhancement</topic><topic>Large language models</topic><topic>Natural language processing</topic><topic>Visual fields</topic><toplevel>online_resources</toplevel><creatorcontrib>Chia Xin Liang</creatorcontrib><creatorcontrib>Tian, Pu</creatorcontrib><creatorcontrib>Yin, Caitlyn Heqi</creatorcontrib><creatorcontrib>Yao Yua</creatorcontrib><creatorcontrib>An-Hou, Wei</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Wang, Tianyang</creatorcontrib><creatorcontrib>Bi, Ziqian</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chia Xin Liang</au><au>Tian, Pu</au><au>Yin, Caitlyn Heqi</au><au>Yao Yua</au><au>An-Hou, Wei</au><au>Li, Ming</au><au>Wang, Tianyang</au><au>Bi, Ziqian</au><au>Liu, Ming</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks</atitle><jtitle>arXiv.org</jtitle><date>2024-12-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This survey and application guide to multimodal large language models(MLLMs) explores the rapidly developing field of MLLMs, examining their architectures, applications, and impact on AI and Generative Models. Starting with foundational concepts, we delve into how MLLMs integrate various data types, including text, images, video and audio, to enable complex AI systems for cross-modal understanding and generation. It covers essential topics such as training methods, architectural components, and practical applications in various fields, from visual storytelling to enhanced accessibility. Through detailed case studies and technical analysis, the text examines prominent MLLM implementations while addressing key challenges in scalability, robustness, and cross-modal learning. Concluding with a discussion of ethical considerations, responsible AI development, and future directions, this authoritative resource provides both theoretical frameworks and practical insights. It offers a balanced perspective on the opportunities and challenges in the development and deployment of MLLMs, and is highly valuable for researchers, practitioners, and students interested in the intersection of natural language processing and computer vision.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3127422138
source Free E- Journals
subjects Audio data
Computer vision
Image enhancement
Large language models
Natural language processing
Visual fields
title A Comprehensive Survey and Guide to Multimodal Large Language Models in Vision-Language Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Comprehensive%20Survey%20and%20Guide%20to%20Multimodal%20Large%20Language%20Models%20in%20Vision-Language%20Tasks&rft.jtitle=arXiv.org&rft.au=Chia%20Xin%20Liang&rft.date=2024-12-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3127422138%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127422138&rft_id=info:pmid/&rfr_iscdi=true