DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations
Weather radar data synthesis can fill in data for areas where ground observations are missing. Existing methods often employ reconstruction-based approaches with MSE loss to reconstruct radar data from satellite observation. However, such methods lead to over-smoothing, which hinders the generation...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | He, Xuming Zhou, Zhiwang Zhang, Wenlong Zhao, Xiangyu Chen, Hao Chen, Shiqi Bai, Lei |
description | Weather radar data synthesis can fill in data for areas where ground observations are missing. Existing methods often employ reconstruction-based approaches with MSE loss to reconstruct radar data from satellite observation. However, such methods lead to over-smoothing, which hinders the generation of high-frequency details or high-value observation areas associated with convective weather. To address this issue, we propose a two-stage diffusion-based method called DiffSR. We first pre-train a reconstruction model on global-scale data to obtain radar estimation and then synthesize radar reflectivity by combining radar estimation results with satellite data as conditions for the diffusion model. Extensive experiments show that our method achieves state-of-the-art (SOTA) results, demonstrating the ability to generate high-frequency details and high-value areas. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3127421385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127421385</sourcerecordid><originalsourceid>FETCH-proquest_journals_31274213853</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOBaaJPWFrd-cKEIrVuRqC8aiYnmpYXeXgUP4GoWM9NjERcinZQZ5wMWE92TJOHTgue5iNhhoZWqqxlsUHqr7RUqeZEeKlQGz0G3OnRQdzbckDRBqyV8j4a0s7B1FzSgvHtALQMaowPC7kToWxk-AY1YX0lDGP84ZOPVcj9fT57evRqkcLy7xtuPOoqUFxlPRZmL_6o3869D0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127421385</pqid></control><display><type>article</type><title>DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations</title><source>Free E- Journals</source><creator>He, Xuming ; Zhou, Zhiwang ; Zhang, Wenlong ; Zhao, Xiangyu ; Chen, Hao ; Chen, Shiqi ; Bai, Lei</creator><creatorcontrib>He, Xuming ; Zhou, Zhiwang ; Zhang, Wenlong ; Zhao, Xiangyu ; Chen, Hao ; Chen, Shiqi ; Bai, Lei</creatorcontrib><description>Weather radar data synthesis can fill in data for areas where ground observations are missing. Existing methods often employ reconstruction-based approaches with MSE loss to reconstruct radar data from satellite observation. However, such methods lead to over-smoothing, which hinders the generation of high-frequency details or high-value observation areas associated with convective weather. To address this issue, we propose a two-stage diffusion-based method called DiffSR. We first pre-train a reconstruction model on global-scale data to obtain radar estimation and then synthesize radar reflectivity by combining radar estimation results with satellite data as conditions for the diffusion model. Extensive experiments show that our method achieves state-of-the-art (SOTA) results, demonstrating the ability to generate high-frequency details and high-value areas.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data smoothing ; Meteorological radar ; Radar data ; Reconstruction ; Reflectance ; Satellite observation ; Synthesis ; Weather</subject><ispartof>arXiv.org, 2024-11</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>He, Xuming</creatorcontrib><creatorcontrib>Zhou, Zhiwang</creatorcontrib><creatorcontrib>Zhang, Wenlong</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Chen, Shiqi</creatorcontrib><creatorcontrib>Bai, Lei</creatorcontrib><title>DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations</title><title>arXiv.org</title><description>Weather radar data synthesis can fill in data for areas where ground observations are missing. Existing methods often employ reconstruction-based approaches with MSE loss to reconstruct radar data from satellite observation. However, such methods lead to over-smoothing, which hinders the generation of high-frequency details or high-value observation areas associated with convective weather. To address this issue, we propose a two-stage diffusion-based method called DiffSR. We first pre-train a reconstruction model on global-scale data to obtain radar estimation and then synthesize radar reflectivity by combining radar estimation results with satellite data as conditions for the diffusion model. Extensive experiments show that our method achieves state-of-the-art (SOTA) results, demonstrating the ability to generate high-frequency details and high-value areas.</description><subject>Data smoothing</subject><subject>Meteorological radar</subject><subject>Radar data</subject><subject>Reconstruction</subject><subject>Reflectance</subject><subject>Satellite observation</subject><subject>Synthesis</subject><subject>Weather</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOBaaJPWFrd-cKEIrVuRqC8aiYnmpYXeXgUP4GoWM9NjERcinZQZ5wMWE92TJOHTgue5iNhhoZWqqxlsUHqr7RUqeZEeKlQGz0G3OnRQdzbckDRBqyV8j4a0s7B1FzSgvHtALQMaowPC7kToWxk-AY1YX0lDGP84ZOPVcj9fT57evRqkcLy7xtuPOoqUFxlPRZmL_6o3869D0g</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>He, Xuming</creator><creator>Zhou, Zhiwang</creator><creator>Zhang, Wenlong</creator><creator>Zhao, Xiangyu</creator><creator>Chen, Hao</creator><creator>Chen, Shiqi</creator><creator>Bai, Lei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241111</creationdate><title>DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations</title><author>He, Xuming ; Zhou, Zhiwang ; Zhang, Wenlong ; Zhao, Xiangyu ; Chen, Hao ; Chen, Shiqi ; Bai, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31274213853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data smoothing</topic><topic>Meteorological radar</topic><topic>Radar data</topic><topic>Reconstruction</topic><topic>Reflectance</topic><topic>Satellite observation</topic><topic>Synthesis</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Xuming</creatorcontrib><creatorcontrib>Zhou, Zhiwang</creatorcontrib><creatorcontrib>Zhang, Wenlong</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Chen, Shiqi</creatorcontrib><creatorcontrib>Bai, Lei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xuming</au><au>Zhou, Zhiwang</au><au>Zhang, Wenlong</au><au>Zhao, Xiangyu</au><au>Chen, Hao</au><au>Chen, Shiqi</au><au>Bai, Lei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations</atitle><jtitle>arXiv.org</jtitle><date>2024-11-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Weather radar data synthesis can fill in data for areas where ground observations are missing. Existing methods often employ reconstruction-based approaches with MSE loss to reconstruct radar data from satellite observation. However, such methods lead to over-smoothing, which hinders the generation of high-frequency details or high-value observation areas associated with convective weather. To address this issue, we propose a two-stage diffusion-based method called DiffSR. We first pre-train a reconstruction model on global-scale data to obtain radar estimation and then synthesize radar reflectivity by combining radar estimation results with satellite data as conditions for the diffusion model. Extensive experiments show that our method achieves state-of-the-art (SOTA) results, demonstrating the ability to generate high-frequency details and high-value areas.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3127421385 |
source | Free E- Journals |
subjects | Data smoothing Meteorological radar Radar data Reconstruction Reflectance Satellite observation Synthesis Weather |
title | DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A10%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DiffSR:%20Learning%20Radar%20Reflectivity%20Synthesis%20via%20Diffusion%20Model%20from%20Satellite%20Observations&rft.jtitle=arXiv.org&rft.au=He,%20Xuming&rft.date=2024-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3127421385%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127421385&rft_id=info:pmid/&rfr_iscdi=true |