Camellia oleifera trunks detection and identification based on improved YOLOv7

Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleife...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2024-12, Vol.36 (27), p.n/a
Hauptverfasser: Wang, Haorui, Liu, Yang, Luo, Hong, Luo, Yuanyin, Zhang, Yuyan, Long, Fei, Li, Lijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Concurrency and computation
container_volume 36
creator Wang, Haorui
Liu, Yang
Luo, Hong
Luo, Yuanyin
Zhang, Yuyan
Long, Fei
Li, Lijun
description Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.
doi_str_mv 10.1002/cpe.8265
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127407270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127407270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1845-b0306d9b9f899a2b48801185fe9209c1d298b25ac999ba8339dc3d33166838a03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgT1jw4mXrJNmP5ChL_YBiPejBU8gms5C63a3JbqX_3rQVb57mZXiYd3gIuaYwowDszmxwJliRn5AJzTlLoeDZ6V9mxTm5CGEFQClwOiEvlV5j2zqd9C26Br1OBj92nyGxOKAZXN8lurOJs9gNrnFGH1a1DmiTGNx64_ttzB_LxXJbXpKzRrcBr37nlLw_zN-qp3SxfHyu7hepoSLL0xo4FFbWshFSalZnQsSHRN6gZCANtUyKmuXaSClrLTiX1nDLOS0KwYUGPiU3x7ux_WvEMKhVP_ouVipOWZlByco9dXukjO9D8NiojXdr7XeKgtrbUtGW2tuKaHpEv12Lu385Vb3OD_wP7I9pkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127407270</pqid></control><display><type>article</type><title>Camellia oleifera trunks detection and identification based on improved YOLOv7</title><source>Wiley-Blackwell Journals</source><creator>Wang, Haorui ; Liu, Yang ; Luo, Hong ; Luo, Yuanyin ; Zhang, Yuyan ; Long, Fei ; Li, Lijun</creator><creatorcontrib>Wang, Haorui ; Liu, Yang ; Luo, Hong ; Luo, Yuanyin ; Zhang, Yuyan ; Long, Fei ; Li, Lijun</creatorcontrib><description>Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.8265</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algorithms ; attention mechanism ; Camellia oleifera trunks ; DSConv ; EIoU ; Feature extraction ; Harvesting ; Memory devices ; Modernization ; Object recognition ; Robustness ; Target detection ; YOLOv7</subject><ispartof>Concurrency and computation, 2024-12, Vol.36 (27), p.n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1845-b0306d9b9f899a2b48801185fe9209c1d298b25ac999ba8339dc3d33166838a03</cites><orcidid>0009-0009-2641-2883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.8265$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.8265$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Haorui</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Luo, Hong</creatorcontrib><creatorcontrib>Luo, Yuanyin</creatorcontrib><creatorcontrib>Zhang, Yuyan</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>Li, Lijun</creatorcontrib><title>Camellia oleifera trunks detection and identification based on improved YOLOv7</title><title>Concurrency and computation</title><description>Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>attention mechanism</subject><subject>Camellia oleifera trunks</subject><subject>DSConv</subject><subject>EIoU</subject><subject>Feature extraction</subject><subject>Harvesting</subject><subject>Memory devices</subject><subject>Modernization</subject><subject>Object recognition</subject><subject>Robustness</subject><subject>Target detection</subject><subject>YOLOv7</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgT1jw4mXrJNmP5ChL_YBiPejBU8gms5C63a3JbqX_3rQVb57mZXiYd3gIuaYwowDszmxwJliRn5AJzTlLoeDZ6V9mxTm5CGEFQClwOiEvlV5j2zqd9C26Br1OBj92nyGxOKAZXN8lurOJs9gNrnFGH1a1DmiTGNx64_ttzB_LxXJbXpKzRrcBr37nlLw_zN-qp3SxfHyu7hepoSLL0xo4FFbWshFSalZnQsSHRN6gZCANtUyKmuXaSClrLTiX1nDLOS0KwYUGPiU3x7ux_WvEMKhVP_ouVipOWZlByco9dXukjO9D8NiojXdr7XeKgtrbUtGW2tuKaHpEv12Lu385Vb3OD_wP7I9pkA</recordid><startdate>20241210</startdate><enddate>20241210</enddate><creator>Wang, Haorui</creator><creator>Liu, Yang</creator><creator>Luo, Hong</creator><creator>Luo, Yuanyin</creator><creator>Zhang, Yuyan</creator><creator>Long, Fei</creator><creator>Li, Lijun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0009-2641-2883</orcidid></search><sort><creationdate>20241210</creationdate><title>Camellia oleifera trunks detection and identification based on improved YOLOv7</title><author>Wang, Haorui ; Liu, Yang ; Luo, Hong ; Luo, Yuanyin ; Zhang, Yuyan ; Long, Fei ; Li, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1845-b0306d9b9f899a2b48801185fe9209c1d298b25ac999ba8339dc3d33166838a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>attention mechanism</topic><topic>Camellia oleifera trunks</topic><topic>DSConv</topic><topic>EIoU</topic><topic>Feature extraction</topic><topic>Harvesting</topic><topic>Memory devices</topic><topic>Modernization</topic><topic>Object recognition</topic><topic>Robustness</topic><topic>Target detection</topic><topic>YOLOv7</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haorui</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Luo, Hong</creatorcontrib><creatorcontrib>Luo, Yuanyin</creatorcontrib><creatorcontrib>Zhang, Yuyan</creatorcontrib><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>Li, Lijun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haorui</au><au>Liu, Yang</au><au>Luo, Hong</au><au>Luo, Yuanyin</au><au>Zhang, Yuyan</au><au>Long, Fei</au><au>Li, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Camellia oleifera trunks detection and identification based on improved YOLOv7</atitle><jtitle>Concurrency and computation</jtitle><date>2024-12-10</date><risdate>2024</risdate><volume>36</volume><issue>27</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Camellia oleifera typically thrives in unstructured environments, making the identification of its trunks crucial for advancing agricultural robots towards modernization and sustainability. Traditional target detection algorithms, however, fall short in accurately identifying Camellia oleifera trunks, especially in scenarios characterized by small targets and poor lighting. This article introduces an enhanced trunk detection algorithm for Camellia oleifera based on an improved YOLOv7 model. This model incorporates dynamic snake convolution instead of standard convolutions to bolster its feature extraction capabilities. It integrates more contextual information, thus enhancing the model's generalization ability across various scenes. Additionally, coordinate attention is introduced to refine the model's spatial feature representation, amplifying the network's focus on essential target region features, which in turn boosts detection accuracy and robustness. This feature selectively strengthens response levels across different channels, prioritizing key attributes for classification and localization. Moreover, the original coordinate loss function of YOLOv7 is replaced with EIoU loss, further enhancing the model's robustness and convergence speed. Experimental results demonstrate a recall rate of 96%, a mean average precision (mAP) of 87.9%, an F1 score of 0.87, and a detection speed of 18 milliseconds per frame. When compared with other models like Faster‐RCNN, YOLOv3, ScaledYOLOv4, YOLOv5, and the original YOLOv7, our improved model shows mAP increases of 8.1%, 7.0%, 7.5%, and 6.6% respectively. Occupying only 70.8 MB, our model requires 9.8 MB less memory than the original YOLOv7. This model not only achieves high accuracy and detection efficiency but is also easily deployable on mobile devices, providing a robust foundation for future intelligent harvesting technologies.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.8265</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0009-2641-2883</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2024-12, Vol.36 (27), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_3127407270
source Wiley-Blackwell Journals
subjects Accuracy
Algorithms
attention mechanism
Camellia oleifera trunks
DSConv
EIoU
Feature extraction
Harvesting
Memory devices
Modernization
Object recognition
Robustness
Target detection
YOLOv7
title Camellia oleifera trunks detection and identification based on improved YOLOv7
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Camellia%20oleifera%20trunks%20detection%20and%20identification%20based%20on%20improved%20YOLOv7&rft.jtitle=Concurrency%20and%20computation&rft.au=Wang,%20Haorui&rft.date=2024-12-10&rft.volume=36&rft.issue=27&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.8265&rft_dat=%3Cproquest_cross%3E3127407270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127407270&rft_id=info:pmid/&rfr_iscdi=true