The Area Under the Witch of Agnesi
The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy'...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2024-10, Vol.131 (9), p.802-802 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 9 |
container_start_page | 802 |
container_title | The American mathematical monthly |
container_volume | 131 |
creator | Bradley, David M. |
description | The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi. |
doi_str_mv | 10.1080/00029890.2024.2386921 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127376295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127376295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-1dcfb0e90854a723f467fe29dbb5a0bdbb9f703cb80fb469c1fa9b3706b234a53</originalsourceid><addsrcrecordid>eNo1kFFLwzAUhYMoWKc_QSj63HpzkzTNYxk6hYEvGz6GJE1ch7Yz6R7897ZsPh0OfJwDHyH3FEoKNTwBAKpaQYmAvERWVwrpBcmoYlCAknhJspkpZuia3KS0nyoIjhl52Ox83kRv8m3f-piPU_3oRrfLh5A3n71P3S25CuYr-btzLsj25XmzfC3W76u3ZbMuHBVqLGjrggWvoBbcSGSBVzJ4VK21woCdQgUJzNkaguWVcjQYZZmEyiLjRrAFeTztHuLwc_Rp1PvhGPvpUjOKkskK1UyJE-XikFL0QR9i923ir6agZx36X4eedeizDvYHWqZP9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127376295</pqid></control><display><type>article</type><title>The Area Under the Witch of Agnesi</title><source>Alma/SFX Local Collection</source><creator>Bradley, David M.</creator><creatorcontrib>Bradley, David M.</creatorcontrib><description>The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2024.2386921</identifier><language>eng</language><publisher>Washington: Taylor & Francis Ltd</publisher><subject>Derivatives ; Differential equations ; Integrals ; Mathematical problems ; Proof theory ; Theorems ; Transcendental functions</subject><ispartof>The American mathematical monthly, 2024-10, Vol.131 (9), p.802-802</ispartof><rights>Copyright Taylor & Francis Ltd. Nov 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c159t-1dcfb0e90854a723f467fe29dbb5a0bdbb9f703cb80fb469c1fa9b3706b234a53</cites><orcidid>0000-0003-2952-2366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bradley, David M.</creatorcontrib><title>The Area Under the Witch of Agnesi</title><title>The American mathematical monthly</title><description>The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.</description><subject>Derivatives</subject><subject>Differential equations</subject><subject>Integrals</subject><subject>Mathematical problems</subject><subject>Proof theory</subject><subject>Theorems</subject><subject>Transcendental functions</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kFFLwzAUhYMoWKc_QSj63HpzkzTNYxk6hYEvGz6GJE1ch7Yz6R7897ZsPh0OfJwDHyH3FEoKNTwBAKpaQYmAvERWVwrpBcmoYlCAknhJspkpZuia3KS0nyoIjhl52Ox83kRv8m3f-piPU_3oRrfLh5A3n71P3S25CuYr-btzLsj25XmzfC3W76u3ZbMuHBVqLGjrggWvoBbcSGSBVzJ4VK21woCdQgUJzNkaguWVcjQYZZmEyiLjRrAFeTztHuLwc_Rp1PvhGPvpUjOKkskK1UyJE-XikFL0QR9i923ir6agZx36X4eedeizDvYHWqZP9A</recordid><startdate>20241020</startdate><enddate>20241020</enddate><creator>Bradley, David M.</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2952-2366</orcidid></search><sort><creationdate>20241020</creationdate><title>The Area Under the Witch of Agnesi</title><author>Bradley, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-1dcfb0e90854a723f467fe29dbb5a0bdbb9f703cb80fb469c1fa9b3706b234a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Derivatives</topic><topic>Differential equations</topic><topic>Integrals</topic><topic>Mathematical problems</topic><topic>Proof theory</topic><topic>Theorems</topic><topic>Transcendental functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradley, David M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradley, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Area Under the Witch of Agnesi</atitle><jtitle>The American mathematical monthly</jtitle><date>2024-10-20</date><risdate>2024</risdate><volume>131</volume><issue>9</issue><spage>802</spage><epage>802</epage><pages>802-802</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.</abstract><cop>Washington</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/00029890.2024.2386921</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2952-2366</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2024-10, Vol.131 (9), p.802-802 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_proquest_journals_3127376295 |
source | Alma/SFX Local Collection |
subjects | Derivatives Differential equations Integrals Mathematical problems Proof theory Theorems Transcendental functions |
title | The Area Under the Witch of Agnesi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Area%20Under%20the%20Witch%20of%20Agnesi&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Bradley,%20David%20M.&rft.date=2024-10-20&rft.volume=131&rft.issue=9&rft.spage=802&rft.epage=802&rft.pages=802-802&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2024.2386921&rft_dat=%3Cproquest_cross%3E3127376295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127376295&rft_id=info:pmid/&rfr_iscdi=true |