The Area Under the Witch of Agnesi

The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2024-10, Vol.131 (9), p.802-802
1. Verfasser: Bradley, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 9
container_start_page 802
container_title The American mathematical monthly
container_volume 131
creator Bradley, David M.
description The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.
doi_str_mv 10.1080/00029890.2024.2386921
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127376295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127376295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-1dcfb0e90854a723f467fe29dbb5a0bdbb9f703cb80fb469c1fa9b3706b234a53</originalsourceid><addsrcrecordid>eNo1kFFLwzAUhYMoWKc_QSj63HpzkzTNYxk6hYEvGz6GJE1ch7Yz6R7897ZsPh0OfJwDHyH3FEoKNTwBAKpaQYmAvERWVwrpBcmoYlCAknhJspkpZuia3KS0nyoIjhl52Ox83kRv8m3f-piPU_3oRrfLh5A3n71P3S25CuYr-btzLsj25XmzfC3W76u3ZbMuHBVqLGjrggWvoBbcSGSBVzJ4VK21woCdQgUJzNkaguWVcjQYZZmEyiLjRrAFeTztHuLwc_Rp1PvhGPvpUjOKkskK1UyJE-XikFL0QR9i923ir6agZx36X4eedeizDvYHWqZP9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127376295</pqid></control><display><type>article</type><title>The Area Under the Witch of Agnesi</title><source>Alma/SFX Local Collection</source><creator>Bradley, David M.</creator><creatorcontrib>Bradley, David M.</creatorcontrib><description>The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2024.2386921</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Ltd</publisher><subject>Derivatives ; Differential equations ; Integrals ; Mathematical problems ; Proof theory ; Theorems ; Transcendental functions</subject><ispartof>The American mathematical monthly, 2024-10, Vol.131 (9), p.802-802</ispartof><rights>Copyright Taylor &amp; Francis Ltd. Nov 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c159t-1dcfb0e90854a723f467fe29dbb5a0bdbb9f703cb80fb469c1fa9b3706b234a53</cites><orcidid>0000-0003-2952-2366</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bradley, David M.</creatorcontrib><title>The Area Under the Witch of Agnesi</title><title>The American mathematical monthly</title><description>The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.</description><subject>Derivatives</subject><subject>Differential equations</subject><subject>Integrals</subject><subject>Mathematical problems</subject><subject>Proof theory</subject><subject>Theorems</subject><subject>Transcendental functions</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kFFLwzAUhYMoWKc_QSj63HpzkzTNYxk6hYEvGz6GJE1ch7Yz6R7897ZsPh0OfJwDHyH3FEoKNTwBAKpaQYmAvERWVwrpBcmoYlCAknhJspkpZuia3KS0nyoIjhl52Ox83kRv8m3f-piPU_3oRrfLh5A3n71P3S25CuYr-btzLsj25XmzfC3W76u3ZbMuHBVqLGjrggWvoBbcSGSBVzJ4VK21woCdQgUJzNkaguWVcjQYZZmEyiLjRrAFeTztHuLwc_Rp1PvhGPvpUjOKkskK1UyJE-XikFL0QR9i923ir6agZx36X4eedeizDvYHWqZP9A</recordid><startdate>20241020</startdate><enddate>20241020</enddate><creator>Bradley, David M.</creator><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-2952-2366</orcidid></search><sort><creationdate>20241020</creationdate><title>The Area Under the Witch of Agnesi</title><author>Bradley, David M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-1dcfb0e90854a723f467fe29dbb5a0bdbb9f703cb80fb469c1fa9b3706b234a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Derivatives</topic><topic>Differential equations</topic><topic>Integrals</topic><topic>Mathematical problems</topic><topic>Proof theory</topic><topic>Theorems</topic><topic>Transcendental functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradley, David M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradley, David M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Area Under the Witch of Agnesi</atitle><jtitle>The American mathematical monthly</jtitle><date>2024-10-20</date><risdate>2024</risdate><volume>131</volume><issue>9</issue><spage>802</spage><epage>802</epage><pages>802-802</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Ltd</pub><doi>10.1080/00029890.2024.2386921</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2952-2366</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9890
ispartof The American mathematical monthly, 2024-10, Vol.131 (9), p.802-802
issn 0002-9890
1930-0972
language eng
recordid cdi_proquest_journals_3127376295
source Alma/SFX Local Collection
subjects Derivatives
Differential equations
Integrals
Mathematical problems
Proof theory
Theorems
Transcendental functions
title The Area Under the Witch of Agnesi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Area%20Under%20the%20Witch%20of%20Agnesi&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Bradley,%20David%20M.&rft.date=2024-10-20&rft.volume=131&rft.issue=9&rft.spage=802&rft.epage=802&rft.pages=802-802&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2024.2386921&rft_dat=%3Cproquest_cross%3E3127376295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127376295&rft_id=info:pmid/&rfr_iscdi=true