The Area Under the Witch of Agnesi

The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2024-10, Vol.131 (9), p.802-802
1. Verfasser: Bradley, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The area under the witch of Agnesi is discussed. Real-variable proofs of typically appeal to the fact that the inverse tangent is an anti-derivative for the integrand or that the differential equation tan = 1 + tan2 holds on the open interval. Complex-variable proofs typically appeal to Cauchy's residue theorem. The proof below requires neither Cauchy's theorem nor knowledge of any transcendental functions, and also connects the value of the integral more directly with the geometrical definition of pi.
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2024.2386921