Kempner-like Harmonic Series
Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. T...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2024-10, Vol.131 (9), p.775-783 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 783 |
---|---|
container_issue | 9 |
container_start_page | 775 |
container_title | The American mathematical monthly |
container_volume | 131 |
creator | Allouche, Jean-Paul Morin, Claude |
description | Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. Then we give a generalization that addresses the case where s2(n) is replaced with sb(n), the sum of b-ary digits in base b: we prove that limk→∞... = (2 log b)/(b − 1). Finally we indicate that other generalizations could be studied: the sum of digits in base 2 could be replaced with, e.g., the function a11(n) of -possibly overlapping- 11 in the base-2 expansion of n, for which one can obtain limk→∞... 1/n = 4 log 2. (ProQuest: ... denotes formulae omited.) |
doi_str_mv | 10.1080/00029890.2024.2380232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127376065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127376065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c206t-81e322f09c5219242ed8a8c8143cdeaf7c2489f843744ff1529fdd4735e542e13</originalsourceid><addsrcrecordid>eNo1kE1LAzEURYMoOFb_gULBdcaXl2SSLKWoFQsu1HUYMi8wtfNh0i78987QunpcONz7OIzdCSgFWHgAAHTWQYmAqkRpASWesUI4CRycwXNWzAyfoUt2lfN2iqAVFuz2jbqxp8R37Tct13Xqhr4Nyw9KLeVrdhHrXaab012wr-enz9Wab95fXlePGx4Qqj23giRiBBc0CocKqbG1DVYoGRqqowmorItWSaNUjEKji02jjNQ0_UBCLtj9sXdMw8-B8t5vh0Pqp0kvBRppKqj0ROkjFdKQc6Lox9R2dfr1Avwswv-L8LMIfxIh_wAoVU1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127376065</pqid></control><display><type>article</type><title>Kempner-like Harmonic Series</title><source>Alma/SFX Local Collection</source><creator>Allouche, Jean-Paul ; Morin, Claude</creator><creatorcontrib>Allouche, Jean-Paul ; Morin, Claude</creatorcontrib><description>Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. Then we give a generalization that addresses the case where s2(n) is replaced with sb(n), the sum of b-ary digits in base b: we prove that limk→∞... = (2 log b)/(b − 1). Finally we indicate that other generalizations could be studied: the sum of digits in base 2 could be replaced with, e.g., the function a11(n) of -possibly overlapping- 11 in the base-2 expansion of n, for which one can obtain limk→∞... 1/n = 4 log 2. (ProQuest: ... denotes formulae omited.)</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.1080/00029890.2024.2380232</identifier><language>eng</language><publisher>Washington: Taylor & Francis Ltd</publisher><subject>Binary digits ; Harmonic analysis ; Mathematical problems ; Short stories ; Theorems</subject><ispartof>The American mathematical monthly, 2024-10, Vol.131 (9), p.775-783</ispartof><rights>Copyright Taylor & Francis Ltd. Nov 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c206t-81e322f09c5219242ed8a8c8143cdeaf7c2489f843744ff1529fdd4735e542e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Allouche, Jean-Paul</creatorcontrib><creatorcontrib>Morin, Claude</creatorcontrib><title>Kempner-like Harmonic Series</title><title>The American mathematical monthly</title><description>Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. Then we give a generalization that addresses the case where s2(n) is replaced with sb(n), the sum of b-ary digits in base b: we prove that limk→∞... = (2 log b)/(b − 1). Finally we indicate that other generalizations could be studied: the sum of digits in base 2 could be replaced with, e.g., the function a11(n) of -possibly overlapping- 11 in the base-2 expansion of n, for which one can obtain limk→∞... 1/n = 4 log 2. (ProQuest: ... denotes formulae omited.)</description><subject>Binary digits</subject><subject>Harmonic analysis</subject><subject>Mathematical problems</subject><subject>Short stories</subject><subject>Theorems</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEURYMoOFb_gULBdcaXl2SSLKWoFQsu1HUYMi8wtfNh0i78987QunpcONz7OIzdCSgFWHgAAHTWQYmAqkRpASWesUI4CRycwXNWzAyfoUt2lfN2iqAVFuz2jbqxp8R37Tct13Xqhr4Nyw9KLeVrdhHrXaab012wr-enz9Wab95fXlePGx4Qqj23giRiBBc0CocKqbG1DVYoGRqqowmorItWSaNUjEKji02jjNQ0_UBCLtj9sXdMw8-B8t5vh0Pqp0kvBRppKqj0ROkjFdKQc6Lox9R2dfr1Avwswv-L8LMIfxIh_wAoVU1Y</recordid><startdate>20241020</startdate><enddate>20241020</enddate><creator>Allouche, Jean-Paul</creator><creator>Morin, Claude</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241020</creationdate><title>Kempner-like Harmonic Series</title><author>Allouche, Jean-Paul ; Morin, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c206t-81e322f09c5219242ed8a8c8143cdeaf7c2489f843744ff1529fdd4735e542e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binary digits</topic><topic>Harmonic analysis</topic><topic>Mathematical problems</topic><topic>Short stories</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allouche, Jean-Paul</creatorcontrib><creatorcontrib>Morin, Claude</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allouche, Jean-Paul</au><au>Morin, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kempner-like Harmonic Series</atitle><jtitle>The American mathematical monthly</jtitle><date>2024-10-20</date><risdate>2024</risdate><volume>131</volume><issue>9</issue><spage>775</spage><epage>783</epage><pages>775-783</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>Inspired by a question asked on the list mathfun, we revisit Kempner-like series, i.e., harmonic sums...1/n where the integers n in the summation have "restricted" digits. First we give a short proof that limk→∞(... = 2 log 2, where s2(n) is the sum of the binary digits of the integer n. Then we give a generalization that addresses the case where s2(n) is replaced with sb(n), the sum of b-ary digits in base b: we prove that limk→∞... = (2 log b)/(b − 1). Finally we indicate that other generalizations could be studied: the sum of digits in base 2 could be replaced with, e.g., the function a11(n) of -possibly overlapping- 11 in the base-2 expansion of n, for which one can obtain limk→∞... 1/n = 4 log 2. (ProQuest: ... denotes formulae omited.)</abstract><cop>Washington</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/00029890.2024.2380232</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2024-10, Vol.131 (9), p.775-783 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_proquest_journals_3127376065 |
source | Alma/SFX Local Collection |
subjects | Binary digits Harmonic analysis Mathematical problems Short stories Theorems |
title | Kempner-like Harmonic Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kempner-like%20Harmonic%20Series&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Allouche,%20Jean-Paul&rft.date=2024-10-20&rft.volume=131&rft.issue=9&rft.spage=775&rft.epage=783&rft.pages=775-783&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.1080/00029890.2024.2380232&rft_dat=%3Cproquest_cross%3E3127376065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127376065&rft_id=info:pmid/&rfr_iscdi=true |