Formate Dehydrogenase: Recent Developments for NADH and NADPH Recycling in Biocatalysis

Formate dehydrogenases (FDHs) catalyze the oxidation of formate to CO2 while reducing NAD(P)+ to NAD(P)H and are classified into two main classes: metal‐dependent (Mo‐ or W‐containing) and metal‐independent FDHs. The latter are oxygen‐tolerant and relevant as a cofactor regeneration system for vario...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2024-11, Vol.16 (21), p.n/a
Hauptverfasser: Maier, Artur, Mguni, Lindelo M., Ngo, Anna C. R., Tischler, Dirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title ChemCatChem
container_volume 16
creator Maier, Artur
Mguni, Lindelo M.
Ngo, Anna C. R.
Tischler, Dirk
description Formate dehydrogenases (FDHs) catalyze the oxidation of formate to CO2 while reducing NAD(P)+ to NAD(P)H and are classified into two main classes: metal‐dependent (Mo‐ or W‐containing) and metal‐independent FDHs. The latter are oxygen‐tolerant and relevant as a cofactor regeneration system for various bioprocesses and gained more and more attention due to their ability to catalyze the reverse CO2 reduction. This review gives an overview of metal‐independent FDHs, the recent advances made in this field, and their relevance for future applications in biocatalysis. This includes the exploitation of novel FDHs which have altered co‐substrate specificity as well as enzyme engineering approaches to improve process stability and general performance. Formate dehydrogenases (FDHs) are widely utilized to drive various biocatalysts for the production of valuable compounds. Recent advancements in enzyme engineering have enhanced the functionality of metal‐independent FDHs, increasing their applicability and suitability for specific bioprocesses. This review highlights the latest progress in FDH research, with a particular focus on structural insights, engineering progress, and applications in bioprocesses.
doi_str_mv 10.1002/cctc.202401021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127039779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127039779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2421-f1ee4a93748530c66b8024faefd811bad456b54c7f0771504accb1836cf900c53</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYMoOKevPgd87rz5aNP6NqtzwlCRiY8hTZPZ0TUz6ZT-97ZM5qNP93D5nftxELokMCEA9FrrVk8oUA4EKDlCI5ImImJplh0fdAqn6CyENUCSMRGP0PvM-Y1qDb4zH13p3co0Kpgb_Gq0adq--2Vqt930OmDrPH6a3s2xaspBvMwHrNN11axw1eDbymnVqroLVThHJ1bVwVz81jF6m90v83m0eH54zKeLSFNOSWSJMVz1p_A0ZqCTpEj7B6wytkwJKVTJ46SIuRYWhCAxcKV1QVKWaJsB6JiN0dV-7ta7z50JrVy7nW_6lZIRKoBlQmQ9NdlT2rsQvLFy66uN8p0kIIfw5BCePITXG7K94buqTfcPLfN8mf95fwDMZnID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127039779</pqid></control><display><type>article</type><title>Formate Dehydrogenase: Recent Developments for NADH and NADPH Recycling in Biocatalysis</title><source>Wiley Online Library</source><creator>Maier, Artur ; Mguni, Lindelo M. ; Ngo, Anna C. R. ; Tischler, Dirk</creator><creatorcontrib>Maier, Artur ; Mguni, Lindelo M. ; Ngo, Anna C. R. ; Tischler, Dirk</creatorcontrib><description>Formate dehydrogenases (FDHs) catalyze the oxidation of formate to CO2 while reducing NAD(P)+ to NAD(P)H and are classified into two main classes: metal‐dependent (Mo‐ or W‐containing) and metal‐independent FDHs. The latter are oxygen‐tolerant and relevant as a cofactor regeneration system for various bioprocesses and gained more and more attention due to their ability to catalyze the reverse CO2 reduction. This review gives an overview of metal‐independent FDHs, the recent advances made in this field, and their relevance for future applications in biocatalysis. This includes the exploitation of novel FDHs which have altered co‐substrate specificity as well as enzyme engineering approaches to improve process stability and general performance. Formate dehydrogenases (FDHs) are widely utilized to drive various biocatalysts for the production of valuable compounds. Recent advancements in enzyme engineering have enhanced the functionality of metal‐independent FDHs, increasing their applicability and suitability for specific bioprocesses. This review highlights the latest progress in FDH research, with a particular focus on structural insights, engineering progress, and applications in bioprocesses.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202401021</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>biocatalysis ; biotransformation ; Carbon dioxide ; enzyme cascade ; Formate dehydrogenase ; Nicotinamide adenine dinucleotide ; Oxidation ; oxidoreductase ; protein engineering</subject><ispartof>ChemCatChem, 2024-11, Vol.16 (21), p.n/a</ispartof><rights>2024 The Authors. ChemCatChem published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2421-f1ee4a93748530c66b8024faefd811bad456b54c7f0771504accb1836cf900c53</cites><orcidid>0000-0003-0132-4085 ; 0000-0002-6288-2403 ; 0000-0003-0718-6787 ; 0000-0001-5684-6978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202401021$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202401021$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Maier, Artur</creatorcontrib><creatorcontrib>Mguni, Lindelo M.</creatorcontrib><creatorcontrib>Ngo, Anna C. R.</creatorcontrib><creatorcontrib>Tischler, Dirk</creatorcontrib><title>Formate Dehydrogenase: Recent Developments for NADH and NADPH Recycling in Biocatalysis</title><title>ChemCatChem</title><description>Formate dehydrogenases (FDHs) catalyze the oxidation of formate to CO2 while reducing NAD(P)+ to NAD(P)H and are classified into two main classes: metal‐dependent (Mo‐ or W‐containing) and metal‐independent FDHs. The latter are oxygen‐tolerant and relevant as a cofactor regeneration system for various bioprocesses and gained more and more attention due to their ability to catalyze the reverse CO2 reduction. This review gives an overview of metal‐independent FDHs, the recent advances made in this field, and their relevance for future applications in biocatalysis. This includes the exploitation of novel FDHs which have altered co‐substrate specificity as well as enzyme engineering approaches to improve process stability and general performance. Formate dehydrogenases (FDHs) are widely utilized to drive various biocatalysts for the production of valuable compounds. Recent advancements in enzyme engineering have enhanced the functionality of metal‐independent FDHs, increasing their applicability and suitability for specific bioprocesses. This review highlights the latest progress in FDH research, with a particular focus on structural insights, engineering progress, and applications in bioprocesses.</description><subject>biocatalysis</subject><subject>biotransformation</subject><subject>Carbon dioxide</subject><subject>enzyme cascade</subject><subject>Formate dehydrogenase</subject><subject>Nicotinamide adenine dinucleotide</subject><subject>Oxidation</subject><subject>oxidoreductase</subject><subject>protein engineering</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkN1LwzAUxYMoOKevPgd87rz5aNP6NqtzwlCRiY8hTZPZ0TUz6ZT-97ZM5qNP93D5nftxELokMCEA9FrrVk8oUA4EKDlCI5ImImJplh0fdAqn6CyENUCSMRGP0PvM-Y1qDb4zH13p3co0Kpgb_Gq0adq--2Vqt930OmDrPH6a3s2xaspBvMwHrNN11axw1eDbymnVqroLVThHJ1bVwVz81jF6m90v83m0eH54zKeLSFNOSWSJMVz1p_A0ZqCTpEj7B6wytkwJKVTJ46SIuRYWhCAxcKV1QVKWaJsB6JiN0dV-7ta7z50JrVy7nW_6lZIRKoBlQmQ9NdlT2rsQvLFy66uN8p0kIIfw5BCePITXG7K94buqTfcPLfN8mf95fwDMZnID</recordid><startdate>20241111</startdate><enddate>20241111</enddate><creator>Maier, Artur</creator><creator>Mguni, Lindelo M.</creator><creator>Ngo, Anna C. R.</creator><creator>Tischler, Dirk</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0132-4085</orcidid><orcidid>https://orcid.org/0000-0002-6288-2403</orcidid><orcidid>https://orcid.org/0000-0003-0718-6787</orcidid><orcidid>https://orcid.org/0000-0001-5684-6978</orcidid></search><sort><creationdate>20241111</creationdate><title>Formate Dehydrogenase: Recent Developments for NADH and NADPH Recycling in Biocatalysis</title><author>Maier, Artur ; Mguni, Lindelo M. ; Ngo, Anna C. R. ; Tischler, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2421-f1ee4a93748530c66b8024faefd811bad456b54c7f0771504accb1836cf900c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biocatalysis</topic><topic>biotransformation</topic><topic>Carbon dioxide</topic><topic>enzyme cascade</topic><topic>Formate dehydrogenase</topic><topic>Nicotinamide adenine dinucleotide</topic><topic>Oxidation</topic><topic>oxidoreductase</topic><topic>protein engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, Artur</creatorcontrib><creatorcontrib>Mguni, Lindelo M.</creatorcontrib><creatorcontrib>Ngo, Anna C. R.</creatorcontrib><creatorcontrib>Tischler, Dirk</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, Artur</au><au>Mguni, Lindelo M.</au><au>Ngo, Anna C. R.</au><au>Tischler, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formate Dehydrogenase: Recent Developments for NADH and NADPH Recycling in Biocatalysis</atitle><jtitle>ChemCatChem</jtitle><date>2024-11-11</date><risdate>2024</risdate><volume>16</volume><issue>21</issue><epage>n/a</epage><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Formate dehydrogenases (FDHs) catalyze the oxidation of formate to CO2 while reducing NAD(P)+ to NAD(P)H and are classified into two main classes: metal‐dependent (Mo‐ or W‐containing) and metal‐independent FDHs. The latter are oxygen‐tolerant and relevant as a cofactor regeneration system for various bioprocesses and gained more and more attention due to their ability to catalyze the reverse CO2 reduction. This review gives an overview of metal‐independent FDHs, the recent advances made in this field, and their relevance for future applications in biocatalysis. This includes the exploitation of novel FDHs which have altered co‐substrate specificity as well as enzyme engineering approaches to improve process stability and general performance. Formate dehydrogenases (FDHs) are widely utilized to drive various biocatalysts for the production of valuable compounds. Recent advancements in enzyme engineering have enhanced the functionality of metal‐independent FDHs, increasing their applicability and suitability for specific bioprocesses. This review highlights the latest progress in FDH research, with a particular focus on structural insights, engineering progress, and applications in bioprocesses.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.202401021</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0132-4085</orcidid><orcidid>https://orcid.org/0000-0002-6288-2403</orcidid><orcidid>https://orcid.org/0000-0003-0718-6787</orcidid><orcidid>https://orcid.org/0000-0001-5684-6978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2024-11, Vol.16 (21), p.n/a
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_3127039779
source Wiley Online Library
subjects biocatalysis
biotransformation
Carbon dioxide
enzyme cascade
Formate dehydrogenase
Nicotinamide adenine dinucleotide
Oxidation
oxidoreductase
protein engineering
title Formate Dehydrogenase: Recent Developments for NADH and NADPH Recycling in Biocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formate%20Dehydrogenase:%20Recent%20Developments%20for%20NADH%20and%20NADPH%20Recycling%20in%20Biocatalysis&rft.jtitle=ChemCatChem&rft.au=Maier,%20Artur&rft.date=2024-11-11&rft.volume=16&rft.issue=21&rft.epage=n/a&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202401021&rft_dat=%3Cproquest_cross%3E3127039779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127039779&rft_id=info:pmid/&rfr_iscdi=true