Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films
The effect of temperature on the electrical conductivity ( σ ) and Seebeck coefficient ( S ) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character ( S =−4.8 µV·K −1 ) with...
Gespeichert in:
Veröffentlicht in: | Chinese journal of polymer science 2024, Vol.42 (11), p.1802-1810 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1810 |
---|---|
container_issue | 11 |
container_start_page | 1802 |
container_title | Chinese journal of polymer science |
container_volume | 42 |
creator | Paleo, A. J. Serrato, V. M. Mánuel, J. M. Toledano, O. Muñoz, E. Melle-Franco, M. Krause, B. Pötschke, P. Lozano, K. |
description | The effect of temperature on the electrical conductivity (
σ
) and Seebeck coefficient (
S
) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character (
S
=−4.8 µV·K
−1
) with an
σ
of
ca.
165 S·m
−1
, while the PVDF/CNF composite film shows an
σ
of
ca.
9 S·m
−1
and near-zero
S
(
S
=−0.5 µV·K
−1
). This experimental reduction in
S
is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover, in the temperature range from 40 °C to 100 °C, the
σ
(
T
) of the CNFs and PVDF/CNF film, successfully described by the 3D variable range hopping (VRH) model, is explained as consequence of a thermally activated backscattering mechanism. On the contrary, the
S
(
T
) from 40 °C to 100 °C of the PVDF/CNF film, which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however, it does not follow the increase in
S
(
T
) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the
σ
and
S
of their melt-mixed polymer composites. |
doi_str_mv | 10.1007/s10118-024-3200-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127039020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127039020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-400f57f5afe61b4c27720d2cc9500d56f4ad2820574e7c87f3cbc9f765cd01e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAix6ik-xHdo-lHyq06qH3sJtNakq6qclWXPDHm7KCJ08zMO_7MDwIXVO4pwD8IVCgtCDAUpIwANKfoBFNk5LkDJJTNAKW5YTnvDxHFyFsAfKUZ3yEvmdub9oNnmutZIedxm_O9refpu2taVSrsLYH5-N6h12Lp5Wv43ipWqdNrXzAM9UcpGpw3eP1u_I7p2wEeSPxpK1sH0w4QuPJeLxStsMr8xXjC2N34RKd6coGdfU7x2i9mK-nT2T5-vg8nSyJpGXRkRRAZ1xnlVY5rVPJOGfQMCnLDKDJcp1WDSsYZDxVXBZcJ7KWpeZ5JhugKhmjmwG79-7joEIntu7g43dBJJRxSEqIksaIDinpXQheabH3Zlf5XlAQR8dicCyiY3F0LPrYYUMnxGy7Uf6P_H_pBxVhgA0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127039020</pqid></control><display><type>article</type><title>Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films</title><source>SpringerLink</source><source>Alma/SFX Local Collection</source><creator>Paleo, A. J. ; Serrato, V. M. ; Mánuel, J. M. ; Toledano, O. ; Muñoz, E. ; Melle-Franco, M. ; Krause, B. ; Pötschke, P. ; Lozano, K.</creator><creatorcontrib>Paleo, A. J. ; Serrato, V. M. ; Mánuel, J. M. ; Toledano, O. ; Muñoz, E. ; Melle-Franco, M. ; Krause, B. ; Pötschke, P. ; Lozano, K.</creatorcontrib><description>The effect of temperature on the electrical conductivity (
σ
) and Seebeck coefficient (
S
) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character (
S
=−4.8 µV·K
−1
) with an
σ
of
ca.
165 S·m
−1
, while the PVDF/CNF composite film shows an
σ
of
ca.
9 S·m
−1
and near-zero
S
(
S
=−0.5 µV·K
−1
). This experimental reduction in
S
is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover, in the temperature range from 40 °C to 100 °C, the
σ
(
T
) of the CNFs and PVDF/CNF film, successfully described by the 3D variable range hopping (VRH) model, is explained as consequence of a thermally activated backscattering mechanism. On the contrary, the
S
(
T
) from 40 °C to 100 °C of the PVDF/CNF film, which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however, it does not follow the increase in
S
(
T
) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the
σ
and
S
of their melt-mixed polymer composites.</description><identifier>ISSN: 0256-7679</identifier><identifier>EISSN: 1439-6203</identifier><identifier>DOI: 10.1007/s10118-024-3200-y</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Activated carbon ; Carbon fibers ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electric contacts ; Electrical resistivity ; Electron transfer ; Fluorides ; Industrial Chemistry/Chemical Engineering ; Multi wall carbon nanotubes ; Nanofibers ; Polymer matrix composites ; Polymer Sciences ; Polyvinylidene fluorides ; Research Article ; Seebeck effect ; Temperature effects ; Vinylidene fluoride</subject><ispartof>Chinese journal of polymer science, 2024, Vol.42 (11), p.1802-1810</ispartof><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2024</rights><rights>Chinese Chemical Society Institute of Chemistry, Chinese Academy of Sciences 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-400f57f5afe61b4c27720d2cc9500d56f4ad2820574e7c87f3cbc9f765cd01e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10118-024-3200-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10118-024-3200-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Paleo, A. J.</creatorcontrib><creatorcontrib>Serrato, V. M.</creatorcontrib><creatorcontrib>Mánuel, J. M.</creatorcontrib><creatorcontrib>Toledano, O.</creatorcontrib><creatorcontrib>Muñoz, E.</creatorcontrib><creatorcontrib>Melle-Franco, M.</creatorcontrib><creatorcontrib>Krause, B.</creatorcontrib><creatorcontrib>Pötschke, P.</creatorcontrib><creatorcontrib>Lozano, K.</creatorcontrib><title>Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films</title><title>Chinese journal of polymer science</title><addtitle>Chin J Polym Sci</addtitle><description>The effect of temperature on the electrical conductivity (
σ
) and Seebeck coefficient (
S
) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character (
S
=−4.8 µV·K
−1
) with an
σ
of
ca.
165 S·m
−1
, while the PVDF/CNF composite film shows an
σ
of
ca.
9 S·m
−1
and near-zero
S
(
S
=−0.5 µV·K
−1
). This experimental reduction in
S
is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover, in the temperature range from 40 °C to 100 °C, the
σ
(
T
) of the CNFs and PVDF/CNF film, successfully described by the 3D variable range hopping (VRH) model, is explained as consequence of a thermally activated backscattering mechanism. On the contrary, the
S
(
T
) from 40 °C to 100 °C of the PVDF/CNF film, which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however, it does not follow the increase in
S
(
T
) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the
σ
and
S
of their melt-mixed polymer composites.</description><subject>Activated carbon</subject><subject>Carbon fibers</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electric contacts</subject><subject>Electrical resistivity</subject><subject>Electron transfer</subject><subject>Fluorides</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanofibers</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polyvinylidene fluorides</subject><subject>Research Article</subject><subject>Seebeck effect</subject><subject>Temperature effects</subject><subject>Vinylidene fluoride</subject><issn>0256-7679</issn><issn>1439-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAix6ik-xHdo-lHyq06qH3sJtNakq6qclWXPDHm7KCJ08zMO_7MDwIXVO4pwD8IVCgtCDAUpIwANKfoBFNk5LkDJJTNAKW5YTnvDxHFyFsAfKUZ3yEvmdub9oNnmutZIedxm_O9refpu2taVSrsLYH5-N6h12Lp5Wv43ipWqdNrXzAM9UcpGpw3eP1u_I7p2wEeSPxpK1sH0w4QuPJeLxStsMr8xXjC2N34RKd6coGdfU7x2i9mK-nT2T5-vg8nSyJpGXRkRRAZ1xnlVY5rVPJOGfQMCnLDKDJcp1WDSsYZDxVXBZcJ7KWpeZ5JhugKhmjmwG79-7joEIntu7g43dBJJRxSEqIksaIDinpXQheabH3Zlf5XlAQR8dicCyiY3F0LPrYYUMnxGy7Uf6P_H_pBxVhgA0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Paleo, A. J.</creator><creator>Serrato, V. M.</creator><creator>Mánuel, J. M.</creator><creator>Toledano, O.</creator><creator>Muñoz, E.</creator><creator>Melle-Franco, M.</creator><creator>Krause, B.</creator><creator>Pötschke, P.</creator><creator>Lozano, K.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films</title><author>Paleo, A. J. ; Serrato, V. M. ; Mánuel, J. M. ; Toledano, O. ; Muñoz, E. ; Melle-Franco, M. ; Krause, B. ; Pötschke, P. ; Lozano, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-400f57f5afe61b4c27720d2cc9500d56f4ad2820574e7c87f3cbc9f765cd01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Carbon fibers</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electric contacts</topic><topic>Electrical resistivity</topic><topic>Electron transfer</topic><topic>Fluorides</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanofibers</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polyvinylidene fluorides</topic><topic>Research Article</topic><topic>Seebeck effect</topic><topic>Temperature effects</topic><topic>Vinylidene fluoride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paleo, A. J.</creatorcontrib><creatorcontrib>Serrato, V. M.</creatorcontrib><creatorcontrib>Mánuel, J. M.</creatorcontrib><creatorcontrib>Toledano, O.</creatorcontrib><creatorcontrib>Muñoz, E.</creatorcontrib><creatorcontrib>Melle-Franco, M.</creatorcontrib><creatorcontrib>Krause, B.</creatorcontrib><creatorcontrib>Pötschke, P.</creatorcontrib><creatorcontrib>Lozano, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Chinese journal of polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paleo, A. J.</au><au>Serrato, V. M.</au><au>Mánuel, J. M.</au><au>Toledano, O.</au><au>Muñoz, E.</au><au>Melle-Franco, M.</au><au>Krause, B.</au><au>Pötschke, P.</au><au>Lozano, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films</atitle><jtitle>Chinese journal of polymer science</jtitle><stitle>Chin J Polym Sci</stitle><date>2024</date><risdate>2024</risdate><volume>42</volume><issue>11</issue><spage>1802</spage><epage>1810</epage><pages>1802-1810</pages><issn>0256-7679</issn><eissn>1439-6203</eissn><abstract>The effect of temperature on the electrical conductivity (
σ
) and Seebeck coefficient (
S
) of n-type vapor grown carbon nanofibers (CNFs) and poly(vinylidene fluoride) (PVDF) melt-mixed with 15 wt% of those CNFs is analyzed. At 40 °C, the CNFs show stable n-type character (
S
=−4.8 µV·K
−1
) with an
σ
of
ca.
165 S·m
−1
, while the PVDF/CNF composite film shows an
σ
of
ca.
9 S·m
−1
and near-zero
S
(
S
=−0.5 µV·K
−1
). This experimental reduction in
S
is studied by the density functional tight binding (DFTB) method revealing a contact electron transfer from the CNFs to the PVDF in the interface. Moreover, in the temperature range from 40 °C to 100 °C, the
σ
(
T
) of the CNFs and PVDF/CNF film, successfully described by the 3D variable range hopping (VRH) model, is explained as consequence of a thermally activated backscattering mechanism. On the contrary, the
S
(
T
) from 40 °C to 100 °C of the PVDF/CNF film, which satisfactorily matches the model proposed for some multi-walled carbon nanotube (MWCNT) doped mats; however, it does not follow the increase in
S
(
T
) found for CNFs. All these findings are presented with the aim of discerning the role of these n-type vapor grown carbon nanofibers on the
σ
and
S
of their melt-mixed polymer composites.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10118-024-3200-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-7679 |
ispartof | Chinese journal of polymer science, 2024, Vol.42 (11), p.1802-1810 |
issn | 0256-7679 1439-6203 |
language | eng |
recordid | cdi_proquest_journals_3127039020 |
source | SpringerLink; Alma/SFX Local Collection |
subjects | Activated carbon Carbon fibers Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Electric contacts Electrical resistivity Electron transfer Fluorides Industrial Chemistry/Chemical Engineering Multi wall carbon nanotubes Nanofibers Polymer matrix composites Polymer Sciences Polyvinylidene fluorides Research Article Seebeck effect Temperature effects Vinylidene fluoride |
title | Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20Effect%20of%20Poly(vinylidene%20fluoride)%20on%20Carbon%20Nanofibers%20Deduced%20by%20Thermoelectric%20Analysis%20of%20Their%20Melt%20Mixed%20Films&rft.jtitle=Chinese%20journal%20of%20polymer%20science&rft.au=Paleo,%20A.%20J.&rft.date=2024&rft.volume=42&rft.issue=11&rft.spage=1802&rft.epage=1810&rft.pages=1802-1810&rft.issn=0256-7679&rft.eissn=1439-6203&rft_id=info:doi/10.1007/s10118-024-3200-y&rft_dat=%3Cproquest_cross%3E3127039020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127039020&rft_id=info:pmid/&rfr_iscdi=true |