Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball
We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group S n ⋊ T n ) and alternating separately radial (with corresponding group A n ⋊ T n ) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball o...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Matemática Mexicana 2024-11, Vol.30 (3), Article 95 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Boletín de la Sociedad Matemática Mexicana |
container_volume | 30 |
creator | Sánchez-Nungaray, Armando Rosales-Ortega, José González-Flores, Carlos |
description | We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group
S
n
⋊
T
n
) and alternating separately radial (with corresponding group
A
n
⋊
T
n
) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on
C
n
. Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial. |
doi_str_mv | 10.1007/s40590-024-00668-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127037889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127037889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b4c35663acaa5112fbcbfb5c272a3b300d3e7690135604c277459914f413a45c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeAV6OTr033KMUvKHip4C1k02ybku6uSYrUX29qRW8ehoGZ5xmYF6FLCjcUQN0mAbIGAkwQgKqaEnWCRozVFRGilqdoRAtAGOVv52iS0gYAKOUgQY5QWPRuCD5_4n5w0eQ-Jvzh8xqn_XbrcvT2GpuQXexM9t0Km25ZKnvyu8fJDaaYLuxxNEtvwsFt-pBw3-G8dnjX-YwbE8IFOmtNSG7y08fo9eF-MXsi85fH59ndnFgGkEkjLJdVxY01RlLK2sY2bSMtU8zwhgMsuVNVDbRQIMpYCVnXVLSCciOk5WN0dbw7xP5951LWm35XPghJc8oUcDWd1oViR8rGPqXoWj1EvzVxrynoQ7D6GKwuwervYLUqEj9KqcDdysW_0_9YX3XjfGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127037889</pqid></control><display><type>article</type><title>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</title><source>Springer Nature - Complete Springer Journals</source><creator>Sánchez-Nungaray, Armando ; Rosales-Ortega, José ; González-Flores, Carlos</creator><creatorcontrib>Sánchez-Nungaray, Armando ; Rosales-Ortega, José ; González-Flores, Carlos</creatorcontrib><description>We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group
S
n
⋊
T
n
) and alternating separately radial (with corresponding group
A
n
⋊
T
n
) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on
C
n
. Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.</description><identifier>ISSN: 1405-213X</identifier><identifier>EISSN: 2296-4495</identifier><identifier>DOI: 10.1007/s40590-024-00668-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Operators ; Original Article ; Symbols</subject><ispartof>Boletín de la Sociedad Matemática Mexicana, 2024-11, Vol.30 (3), Article 95</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b4c35663acaa5112fbcbfb5c272a3b300d3e7690135604c277459914f413a45c3</cites><orcidid>0000-0002-9749-6027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40590-024-00668-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40590-024-00668-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><creatorcontrib>Rosales-Ortega, José</creatorcontrib><creatorcontrib>González-Flores, Carlos</creatorcontrib><title>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</title><title>Boletín de la Sociedad Matemática Mexicana</title><addtitle>Bol. Soc. Mat. Mex</addtitle><description>We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group
S
n
⋊
T
n
) and alternating separately radial (with corresponding group
A
n
⋊
T
n
) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on
C
n
. Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Original Article</subject><subject>Symbols</subject><issn>1405-213X</issn><issn>2296-4495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeAV6OTr033KMUvKHip4C1k02ybku6uSYrUX29qRW8ehoGZ5xmYF6FLCjcUQN0mAbIGAkwQgKqaEnWCRozVFRGilqdoRAtAGOVv52iS0gYAKOUgQY5QWPRuCD5_4n5w0eQ-Jvzh8xqn_XbrcvT2GpuQXexM9t0Km25ZKnvyu8fJDaaYLuxxNEtvwsFt-pBw3-G8dnjX-YwbE8IFOmtNSG7y08fo9eF-MXsi85fH59ndnFgGkEkjLJdVxY01RlLK2sY2bSMtU8zwhgMsuVNVDbRQIMpYCVnXVLSCciOk5WN0dbw7xP5951LWm35XPghJc8oUcDWd1oViR8rGPqXoWj1EvzVxrynoQ7D6GKwuwervYLUqEj9KqcDdysW_0_9YX3XjfGE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sánchez-Nungaray, Armando</creator><creator>Rosales-Ortega, José</creator><creator>González-Flores, Carlos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9749-6027</orcidid></search><sort><creationdate>20241101</creationdate><title>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</title><author>Sánchez-Nungaray, Armando ; Rosales-Ortega, José ; González-Flores, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b4c35663acaa5112fbcbfb5c272a3b300d3e7690135604c277459914f413a45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Original Article</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><creatorcontrib>Rosales-Ortega, José</creatorcontrib><creatorcontrib>González-Flores, Carlos</creatorcontrib><collection>CrossRef</collection><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Nungaray, Armando</au><au>Rosales-Ortega, José</au><au>González-Flores, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</atitle><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle><stitle>Bol. Soc. Mat. Mex</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><artnum>95</artnum><issn>1405-213X</issn><eissn>2296-4495</eissn><abstract>We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group
S
n
⋊
T
n
) and alternating separately radial (with corresponding group
A
n
⋊
T
n
) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on
C
n
. Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40590-024-00668-7</doi><orcidid>https://orcid.org/0000-0002-9749-6027</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1405-213X |
ispartof | Boletín de la Sociedad Matemática Mexicana, 2024-11, Vol.30 (3), Article 95 |
issn | 1405-213X 2296-4495 |
language | eng |
recordid | cdi_proquest_journals_3127037889 |
source | Springer Nature - Complete Springer Journals |
subjects | Mathematics Mathematics and Statistics Operators Original Article Symbols |
title | Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toeplitz%20operators%20with%20symmetric,%20alternating%20and%20anti-symmetric%20separately%20radial%20symbols%20on%20the%20unit%20ball&rft.jtitle=Bolet%C3%ADn%20de%20la%20Sociedad%20Matem%C3%A1tica%20Mexicana&rft.au=S%C3%A1nchez-Nungaray,%20Armando&rft.date=2024-11-01&rft.volume=30&rft.issue=3&rft.artnum=95&rft.issn=1405-213X&rft.eissn=2296-4495&rft_id=info:doi/10.1007/s40590-024-00668-7&rft_dat=%3Cproquest_cross%3E3127037889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127037889&rft_id=info:pmid/&rfr_iscdi=true |