Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball

We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group S n ⋊ T n ) and alternating separately radial (with corresponding group A n ⋊ T n ) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2024-11, Vol.30 (3), Article 95
Hauptverfasser: Sánchez-Nungaray, Armando, Rosales-Ortega, José, González-Flores, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Boletín de la Sociedad Matemática Mexicana
container_volume 30
creator Sánchez-Nungaray, Armando
Rosales-Ortega, José
González-Flores, Carlos
description We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group S n ⋊ T n ) and alternating separately radial (with corresponding group A n ⋊ T n ) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on C n . Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.
doi_str_mv 10.1007/s40590-024-00668-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127037889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127037889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-b4c35663acaa5112fbcbfb5c272a3b300d3e7690135604c277459914f413a45c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeAV6OTr033KMUvKHip4C1k02ybku6uSYrUX29qRW8ehoGZ5xmYF6FLCjcUQN0mAbIGAkwQgKqaEnWCRozVFRGilqdoRAtAGOVv52iS0gYAKOUgQY5QWPRuCD5_4n5w0eQ-Jvzh8xqn_XbrcvT2GpuQXexM9t0Km25ZKnvyu8fJDaaYLuxxNEtvwsFt-pBw3-G8dnjX-YwbE8IFOmtNSG7y08fo9eF-MXsi85fH59ndnFgGkEkjLJdVxY01RlLK2sY2bSMtU8zwhgMsuVNVDbRQIMpYCVnXVLSCciOk5WN0dbw7xP5951LWm35XPghJc8oUcDWd1oViR8rGPqXoWj1EvzVxrynoQ7D6GKwuwervYLUqEj9KqcDdysW_0_9YX3XjfGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127037889</pqid></control><display><type>article</type><title>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</title><source>Springer Nature - Complete Springer Journals</source><creator>Sánchez-Nungaray, Armando ; Rosales-Ortega, José ; González-Flores, Carlos</creator><creatorcontrib>Sánchez-Nungaray, Armando ; Rosales-Ortega, José ; González-Flores, Carlos</creatorcontrib><description>We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group S n ⋊ T n ) and alternating separately radial (with corresponding group A n ⋊ T n ) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on C n . Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.</description><identifier>ISSN: 1405-213X</identifier><identifier>EISSN: 2296-4495</identifier><identifier>DOI: 10.1007/s40590-024-00668-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Operators ; Original Article ; Symbols</subject><ispartof>Boletín de la Sociedad Matemática Mexicana, 2024-11, Vol.30 (3), Article 95</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-b4c35663acaa5112fbcbfb5c272a3b300d3e7690135604c277459914f413a45c3</cites><orcidid>0000-0002-9749-6027</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40590-024-00668-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40590-024-00668-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><creatorcontrib>Rosales-Ortega, José</creatorcontrib><creatorcontrib>González-Flores, Carlos</creatorcontrib><title>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</title><title>Boletín de la Sociedad Matemática Mexicana</title><addtitle>Bol. Soc. Mat. Mex</addtitle><description>We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group S n ⋊ T n ) and alternating separately radial (with corresponding group A n ⋊ T n ) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on C n . Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Original Article</subject><subject>Symbols</subject><issn>1405-213X</issn><issn>2296-4495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeAV6OTr033KMUvKHip4C1k02ybku6uSYrUX29qRW8ehoGZ5xmYF6FLCjcUQN0mAbIGAkwQgKqaEnWCRozVFRGilqdoRAtAGOVv52iS0gYAKOUgQY5QWPRuCD5_4n5w0eQ-Jvzh8xqn_XbrcvT2GpuQXexM9t0Km25ZKnvyu8fJDaaYLuxxNEtvwsFt-pBw3-G8dnjX-YwbE8IFOmtNSG7y08fo9eF-MXsi85fH59ndnFgGkEkjLJdVxY01RlLK2sY2bSMtU8zwhgMsuVNVDbRQIMpYCVnXVLSCciOk5WN0dbw7xP5951LWm35XPghJc8oUcDWd1oViR8rGPqXoWj1EvzVxrynoQ7D6GKwuwervYLUqEj9KqcDdysW_0_9YX3XjfGE</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Sánchez-Nungaray, Armando</creator><creator>Rosales-Ortega, José</creator><creator>González-Flores, Carlos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9749-6027</orcidid></search><sort><creationdate>20241101</creationdate><title>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</title><author>Sánchez-Nungaray, Armando ; Rosales-Ortega, José ; González-Flores, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-b4c35663acaa5112fbcbfb5c272a3b300d3e7690135604c277459914f413a45c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Original Article</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez-Nungaray, Armando</creatorcontrib><creatorcontrib>Rosales-Ortega, José</creatorcontrib><creatorcontrib>González-Flores, Carlos</creatorcontrib><collection>CrossRef</collection><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez-Nungaray, Armando</au><au>Rosales-Ortega, José</au><au>González-Flores, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball</atitle><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle><stitle>Bol. Soc. Mat. Mex</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>30</volume><issue>3</issue><artnum>95</artnum><issn>1405-213X</issn><eissn>2296-4495</eissn><abstract>We introduced new subclasses of separately radial symbols: symmetric separately radial (with corresponding group S n ⋊ T n ) and alternating separately radial (with corresponding group A n ⋊ T n ) symbols, as well as the associated Toeplitz operators on the weighted Bergman spaces on the unit ball on C n . Using a purely representation theoretic approach, we study the symmetries of the corresponding sequence of eingenvalues. Furthermore, we show that the symmetric separately radial Toeplitz operators are more general than radial Toeplitz operators, i.e., every radial Toeplitz operator is symmetric separately radial.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40590-024-00668-7</doi><orcidid>https://orcid.org/0000-0002-9749-6027</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1405-213X
ispartof Boletín de la Sociedad Matemática Mexicana, 2024-11, Vol.30 (3), Article 95
issn 1405-213X
2296-4495
language eng
recordid cdi_proquest_journals_3127037889
source Springer Nature - Complete Springer Journals
subjects Mathematics
Mathematics and Statistics
Operators
Original Article
Symbols
title Toeplitz operators with symmetric, alternating and anti-symmetric separately radial symbols on the unit ball
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toeplitz%20operators%20with%20symmetric,%20alternating%20and%20anti-symmetric%20separately%20radial%20symbols%20on%20the%20unit%20ball&rft.jtitle=Bolet%C3%ADn%20de%20la%20Sociedad%20Matem%C3%A1tica%20Mexicana&rft.au=S%C3%A1nchez-Nungaray,%20Armando&rft.date=2024-11-01&rft.volume=30&rft.issue=3&rft.artnum=95&rft.issn=1405-213X&rft.eissn=2296-4495&rft_id=info:doi/10.1007/s40590-024-00668-7&rft_dat=%3Cproquest_cross%3E3127037889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127037889&rft_id=info:pmid/&rfr_iscdi=true