Towards zero-emission urban mobility: Leveraging AI and LCA for targeted interventions

Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of urban carbon emissions in the United States in 2021. Addressing this challenge requires a comprehensive and data-driven approach to transform transportation systems into sustainable networks. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building simulation 2024, Vol.17 (10), p.1653-1657
1. Verfasser: Wang, Qi R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1657
container_issue 10
container_start_page 1653
container_title Building simulation
container_volume 17
creator Wang, Qi R.
description Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of urban carbon emissions in the United States in 2021. Addressing this challenge requires a comprehensive and data-driven approach to transform transportation systems into sustainable networks. This paper presents an integrated framework that leverages artificial intelligence (AI), machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban mobility. The framework consists of four key components: AI-powered analysis and models, synthetic urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy interventions. By combining these elements, the framework not only deciphers complex mobility patterns but also quantifies their environmental impacts, providing actionable insights for policy decisions aimed at reducing carbon emissions and promoting sustainable urban transportation. The implications of this approach extend beyond individual cities, offering a blueprint for global sustainable urban mobility.
doi_str_mv 10.1007/s12273-024-1193-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127037765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127037765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-780db48ef1680e86b9d1c9dd0c08686d901ced7b20338b482c0921e519ba06253</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOOb-AG8Bz9GXpG0Sb2P4Y1DwMr2GtElLx5bMpJvMv96WCp58l_cOn-_3wQehWwr3FEA8JMqY4ARYRihVnIgLNKNKFUSKLLv8vXmu1DVapLSFcQTkGZ-hj034MtEm_O1iIG7fpdQFj4-xMh7vQ9Xtuv78iEt3ctG0nW_xco2Nt7hcLXETIu5NbF3vLO587-LJ-X7Ipxt01ZhdcovfPUfvz0-b1Ssp317Wq2VJapbRnggJtsqka2ghwcmiUpbWylqoQRaysApo7ayoGHAuB5DVoBh1OVWVgYLlfI7upt5DDJ9Hl3q9Dcfoh5eaUyaAC1GMFJ2oOoaUomv0IXZ7E8-agh4N6smgHgzq0aAWQ4ZNmTSwvnXxr_n_0A-IYnJu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127037765</pqid></control><display><type>article</type><title>Towards zero-emission urban mobility: Leveraging AI and LCA for targeted interventions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Qi R.</creator><creatorcontrib>Wang, Qi R.</creatorcontrib><description>Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of urban carbon emissions in the United States in 2021. Addressing this challenge requires a comprehensive and data-driven approach to transform transportation systems into sustainable networks. This paper presents an integrated framework that leverages artificial intelligence (AI), machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban mobility. The framework consists of four key components: AI-powered analysis and models, synthetic urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy interventions. By combining these elements, the framework not only deciphers complex mobility patterns but also quantifies their environmental impacts, providing actionable insights for policy decisions aimed at reducing carbon emissions and promoting sustainable urban transportation. The implications of this approach extend beyond individual cities, offering a blueprint for global sustainable urban mobility.</description><identifier>ISSN: 1996-3599</identifier><identifier>EISSN: 1996-8744</identifier><identifier>DOI: 10.1007/s12273-024-1193-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Artificial intelligence ; Atmospheric Protection/Air Quality Control/Air Pollution ; Building Construction and Design ; Carbon ; Data analysis ; Emissions ; Engineering ; Engineering Thermodynamics ; Environmental impact ; Footprint analysis ; Greenhouse gases ; Heat and Mass Transfer ; Life cycle assessment ; Machine learning ; Monitoring/Environmental Analysis ; Perspective ; Transportation systems ; Urban transportation</subject><ispartof>Building simulation, 2024, Vol.17 (10), p.1653-1657</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-780db48ef1680e86b9d1c9dd0c08686d901ced7b20338b482c0921e519ba06253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12273-024-1193-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12273-024-1193-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Wang, Qi R.</creatorcontrib><title>Towards zero-emission urban mobility: Leveraging AI and LCA for targeted interventions</title><title>Building simulation</title><addtitle>Build. Simul</addtitle><description>Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of urban carbon emissions in the United States in 2021. Addressing this challenge requires a comprehensive and data-driven approach to transform transportation systems into sustainable networks. This paper presents an integrated framework that leverages artificial intelligence (AI), machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban mobility. The framework consists of four key components: AI-powered analysis and models, synthetic urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy interventions. By combining these elements, the framework not only deciphers complex mobility patterns but also quantifies their environmental impacts, providing actionable insights for policy decisions aimed at reducing carbon emissions and promoting sustainable urban transportation. The implications of this approach extend beyond individual cities, offering a blueprint for global sustainable urban mobility.</description><subject>Artificial intelligence</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Building Construction and Design</subject><subject>Carbon</subject><subject>Data analysis</subject><subject>Emissions</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Environmental impact</subject><subject>Footprint analysis</subject><subject>Greenhouse gases</subject><subject>Heat and Mass Transfer</subject><subject>Life cycle assessment</subject><subject>Machine learning</subject><subject>Monitoring/Environmental Analysis</subject><subject>Perspective</subject><subject>Transportation systems</subject><subject>Urban transportation</subject><issn>1996-3599</issn><issn>1996-8744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kM9LwzAUx4MoOOb-AG8Bz9GXpG0Sb2P4Y1DwMr2GtElLx5bMpJvMv96WCp58l_cOn-_3wQehWwr3FEA8JMqY4ARYRihVnIgLNKNKFUSKLLv8vXmu1DVapLSFcQTkGZ-hj034MtEm_O1iIG7fpdQFj4-xMh7vQ9Xtuv78iEt3ctG0nW_xco2Nt7hcLXETIu5NbF3vLO587-LJ-X7Ipxt01ZhdcovfPUfvz0-b1Ssp317Wq2VJapbRnggJtsqka2ghwcmiUpbWylqoQRaysApo7ayoGHAuB5DVoBh1OVWVgYLlfI7upt5DDJ9Hl3q9Dcfoh5eaUyaAC1GMFJ2oOoaUomv0IXZ7E8-agh4N6smgHgzq0aAWQ4ZNmTSwvnXxr_n_0A-IYnJu</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Qi R.</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Towards zero-emission urban mobility: Leveraging AI and LCA for targeted interventions</title><author>Wang, Qi R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-780db48ef1680e86b9d1c9dd0c08686d901ced7b20338b482c0921e519ba06253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Building Construction and Design</topic><topic>Carbon</topic><topic>Data analysis</topic><topic>Emissions</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Environmental impact</topic><topic>Footprint analysis</topic><topic>Greenhouse gases</topic><topic>Heat and Mass Transfer</topic><topic>Life cycle assessment</topic><topic>Machine learning</topic><topic>Monitoring/Environmental Analysis</topic><topic>Perspective</topic><topic>Transportation systems</topic><topic>Urban transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Building simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards zero-emission urban mobility: Leveraging AI and LCA for targeted interventions</atitle><jtitle>Building simulation</jtitle><stitle>Build. Simul</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><issue>10</issue><spage>1653</spage><epage>1657</epage><pages>1653-1657</pages><issn>1996-3599</issn><eissn>1996-8744</eissn><abstract>Urban mobility is a critical contributor to greenhouse gas emissions, accounting for over 30% of urban carbon emissions in the United States in 2021. Addressing this challenge requires a comprehensive and data-driven approach to transform transportation systems into sustainable networks. This paper presents an integrated framework that leverages artificial intelligence (AI), machine learning (ML), and life cycle assessment (LCA) to analyze, model, and optimize urban mobility. The framework consists of four key components: AI-powered analysis and models, synthetic urban mobility data generation, LCA for environmental footprint analysis, and data-driven policy interventions. By combining these elements, the framework not only deciphers complex mobility patterns but also quantifies their environmental impacts, providing actionable insights for policy decisions aimed at reducing carbon emissions and promoting sustainable urban transportation. The implications of this approach extend beyond individual cities, offering a blueprint for global sustainable urban mobility.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12273-024-1193-7</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-3599
ispartof Building simulation, 2024, Vol.17 (10), p.1653-1657
issn 1996-3599
1996-8744
language eng
recordid cdi_proquest_journals_3127037765
source SpringerLink Journals - AutoHoldings
subjects Artificial intelligence
Atmospheric Protection/Air Quality Control/Air Pollution
Building Construction and Design
Carbon
Data analysis
Emissions
Engineering
Engineering Thermodynamics
Environmental impact
Footprint analysis
Greenhouse gases
Heat and Mass Transfer
Life cycle assessment
Machine learning
Monitoring/Environmental Analysis
Perspective
Transportation systems
Urban transportation
title Towards zero-emission urban mobility: Leveraging AI and LCA for targeted interventions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20zero-emission%20urban%20mobility:%20Leveraging%20AI%20and%20LCA%20for%20targeted%20interventions&rft.jtitle=Building%20simulation&rft.au=Wang,%20Qi%20R.&rft.date=2024&rft.volume=17&rft.issue=10&rft.spage=1653&rft.epage=1657&rft.pages=1653-1657&rft.issn=1996-3599&rft.eissn=1996-8744&rft_id=info:doi/10.1007/s12273-024-1193-7&rft_dat=%3Cproquest_cross%3E3127037765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127037765&rft_id=info:pmid/&rfr_iscdi=true