Simple error bounds for an asymptotic expansion of the partition function

Recently, there has been renewed interest in studying the asymptotic properties of the integer partition function p ( n ). Hardy, Ramanujan, and Rademacher provided detailed asymptotic analysis for p ( n ). Presently, attention has shifted towards Poincaré-type asymptotic expansions, characterised b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2024-12, Vol.65 (4), p.1757-1771
1. Verfasser: Nemes, Gergő
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1771
container_issue 4
container_start_page 1757
container_title The Ramanujan journal
container_volume 65
creator Nemes, Gergő
description Recently, there has been renewed interest in studying the asymptotic properties of the integer partition function p ( n ). Hardy, Ramanujan, and Rademacher provided detailed asymptotic analysis for p ( n ). Presently, attention has shifted towards Poincaré-type asymptotic expansions, characterised by their simplicity albeit reduced accuracy compared to the earlier works of Hardy, Ramanujan, and Rademacher. This paper aims to establish computable error bounds for one such simplified expansion. The bounds presented herein are sharper, and their derivation is considerably simpler compared to those found in recent literature.
doi_str_mv 10.1007/s11139-024-00958-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3127036278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3127036278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-308f0bbb10032d090e4f7fc023b2ac398eef6eee3a472713b2ccc9fb4c4b17003</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4BTwHP0ZePNrtHKX4UBA_qOSRpolvaZE2yYP-9WVfw5ukNw8y8YRC6pHBNAeRNppTylgATBKBdNKQ5QjO6kIy0HPhxxbxhREALp-gs5y0ACOByhtYv3b7fOexSigmbOIRNxr5CHbDOh31fYuksdl-9DrmLAUePy4fDvU6lKyPhh2BHcI5OvN5ld_F75-jt_u519Uienh_Wq9snYhlAIRwaD8aYWpuzTS3khJfeAuOGacvbxjm_dM5xLSSTtLLW2tYbYYWhsprm6GrK7VP8HFwuahuHFOpLxSmTwJdMNlXFJpVNMefkvOpTt9fpoCiocTI1TabqZOpnMjWa-GTKVRzeXfqL_sf1DSUIbzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127036278</pqid></control><display><type>article</type><title>Simple error bounds for an asymptotic expansion of the partition function</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nemes, Gergő</creator><creatorcontrib>Nemes, Gergő</creatorcontrib><description>Recently, there has been renewed interest in studying the asymptotic properties of the integer partition function p ( n ). Hardy, Ramanujan, and Rademacher provided detailed asymptotic analysis for p ( n ). Presently, attention has shifted towards Poincaré-type asymptotic expansions, characterised by their simplicity albeit reduced accuracy compared to the earlier works of Hardy, Ramanujan, and Rademacher. This paper aims to establish computable error bounds for one such simplified expansion. The bounds presented herein are sharper, and their derivation is considerably simpler compared to those found in recent literature.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-024-00958-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Asymptotic series ; Combinatorics ; Error analysis ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory ; Partitions (mathematics)</subject><ispartof>The Ramanujan journal, 2024-12, Vol.65 (4), p.1757-1771</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-308f0bbb10032d090e4f7fc023b2ac398eef6eee3a472713b2ccc9fb4c4b17003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-024-00958-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-024-00958-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Nemes, Gergő</creatorcontrib><title>Simple error bounds for an asymptotic expansion of the partition function</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>Recently, there has been renewed interest in studying the asymptotic properties of the integer partition function p ( n ). Hardy, Ramanujan, and Rademacher provided detailed asymptotic analysis for p ( n ). Presently, attention has shifted towards Poincaré-type asymptotic expansions, characterised by their simplicity albeit reduced accuracy compared to the earlier works of Hardy, Ramanujan, and Rademacher. This paper aims to establish computable error bounds for one such simplified expansion. The bounds presented herein are sharper, and their derivation is considerably simpler compared to those found in recent literature.</description><subject>Asymptotic properties</subject><subject>Asymptotic series</subject><subject>Combinatorics</subject><subject>Error analysis</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Partitions (mathematics)</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4BTwHP0ZePNrtHKX4UBA_qOSRpolvaZE2yYP-9WVfw5ukNw8y8YRC6pHBNAeRNppTylgATBKBdNKQ5QjO6kIy0HPhxxbxhREALp-gs5y0ACOByhtYv3b7fOexSigmbOIRNxr5CHbDOh31fYuksdl-9DrmLAUePy4fDvU6lKyPhh2BHcI5OvN5ld_F75-jt_u519Uienh_Wq9snYhlAIRwaD8aYWpuzTS3khJfeAuOGacvbxjm_dM5xLSSTtLLW2tYbYYWhsprm6GrK7VP8HFwuahuHFOpLxSmTwJdMNlXFJpVNMefkvOpTt9fpoCiocTI1TabqZOpnMjWa-GTKVRzeXfqL_sf1DSUIbzc</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Nemes, Gergő</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Simple error bounds for an asymptotic expansion of the partition function</title><author>Nemes, Gergő</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-308f0bbb10032d090e4f7fc023b2ac398eef6eee3a472713b2ccc9fb4c4b17003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic properties</topic><topic>Asymptotic series</topic><topic>Combinatorics</topic><topic>Error analysis</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Partitions (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nemes, Gergő</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nemes, Gergő</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple error bounds for an asymptotic expansion of the partition function</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>65</volume><issue>4</issue><spage>1757</spage><epage>1771</epage><pages>1757-1771</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>Recently, there has been renewed interest in studying the asymptotic properties of the integer partition function p ( n ). Hardy, Ramanujan, and Rademacher provided detailed asymptotic analysis for p ( n ). Presently, attention has shifted towards Poincaré-type asymptotic expansions, characterised by their simplicity albeit reduced accuracy compared to the earlier works of Hardy, Ramanujan, and Rademacher. This paper aims to establish computable error bounds for one such simplified expansion. The bounds presented herein are sharper, and their derivation is considerably simpler compared to those found in recent literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-024-00958-8</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2024-12, Vol.65 (4), p.1757-1771
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_3127036278
source SpringerLink Journals - AutoHoldings
subjects Asymptotic properties
Asymptotic series
Combinatorics
Error analysis
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
Partitions (mathematics)
title Simple error bounds for an asymptotic expansion of the partition function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20error%20bounds%20for%20an%20asymptotic%20expansion%20of%20the%20partition%20function&rft.jtitle=The%20Ramanujan%20journal&rft.au=Nemes,%20Gerg%C5%91&rft.date=2024-12-01&rft.volume=65&rft.issue=4&rft.spage=1757&rft.epage=1771&rft.pages=1757-1771&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-024-00958-8&rft_dat=%3Cproquest_cross%3E3127036278%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127036278&rft_id=info:pmid/&rfr_iscdi=true