A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration
Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex compo...
Gespeichert in:
Veröffentlicht in: | Biomicrofluidics 2024-05, Vol.18 (3), p.034107 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 034107 |
container_title | Biomicrofluidics |
container_volume | 18 |
creator | Guo, Han Wang, Dayin Feng, Shilun Zhang, Kaihuan Luo, Yuan Zhao, Jianlong |
description | Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications. |
doi_str_mv | 10.1063/5.0208417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3126992710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126992710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-1dc1ce6a20f98b06b0f0d2d9ef38371a46bd94a8d85e0106c9a405ddc1fdab9a3</originalsourceid><addsrcrecordid>eNp9kU1PHSEUhkljU6268A80JG5sk9EDzAcsjelXYtJNu56cAeaKYYZbYG70V_iXi53bxnTRDXDCw3sO70vIGYNLBq24ai6Bg6xZ94ocMSV4xaCRBy_Oh-RtSvcADes4f0MOhVR1xyUckadrOoed9XTnkg7WY8pO08npGEa_OFOKrcc8hjjRstAZ57DFWCBvr9KE3lP7kCNq6_3iMdKdTc93NNmCYXZhpvkuhmVzt7ZILj_STUTj7JwrN5tFW1Mablb4hLwe0Sd7ut-PyY9PH7_ffKluv33-enN9W2kuZK6Y0UzbFjmMSg7QDjCC4UbZUUjRMazbwagapZGNheKRVlhDY8qr0eCgUByTi1V3G8PPxabcT2W68gmcbVhSL6CrmSh-1QU9_we9D0ucy3S9YLxVincMCvV-pYpzKUU79tvoJoyPPYP-OaW-6fcpFfbdXnEZJmv-kn9iKcCHFUja5d--_EftF4_sng8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126992710</pqid></control><display><type>article</type><title>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</title><source>AIP Journals Complete</source><creator>Guo, Han ; Wang, Dayin ; Feng, Shilun ; Zhang, Kaihuan ; Luo, Yuan ; Zhao, Jianlong</creator><creatorcontrib>Guo, Han ; Wang, Dayin ; Feng, Shilun ; Zhang, Kaihuan ; Luo, Yuan ; Zhao, Jianlong</creatorcontrib><description>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0208417</identifier><identifier>PMID: 38947280</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Complexity ; Context ; Extracellular vesicles ; Fluorescence ; Microfluidics ; Nanoparticles ; Nucleic acids ; Qualitative analysis ; Recovery ; Separation ; Vesicles ; Viscoelasticity ; Viscosity</subject><ispartof>Biomicrofluidics, 2024-05, Vol.18 (3), p.034107</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-1dc1ce6a20f98b06b0f0d2d9ef38371a46bd94a8d85e0106c9a405ddc1fdab9a3</cites><orcidid>0009-0002-0906-5698 ; 0009-0004-7876-3347 ; 0000-0003-3153-7495 ; 0000-0002-7353-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/5.0208417$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38947280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Han</creatorcontrib><creatorcontrib>Wang, Dayin</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Zhang, Kaihuan</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><title>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</description><subject>Complexity</subject><subject>Context</subject><subject>Extracellular vesicles</subject><subject>Fluorescence</subject><subject>Microfluidics</subject><subject>Nanoparticles</subject><subject>Nucleic acids</subject><subject>Qualitative analysis</subject><subject>Recovery</subject><subject>Separation</subject><subject>Vesicles</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PHSEUhkljU6268A80JG5sk9EDzAcsjelXYtJNu56cAeaKYYZbYG70V_iXi53bxnTRDXDCw3sO70vIGYNLBq24ai6Bg6xZ94ocMSV4xaCRBy_Oh-RtSvcADes4f0MOhVR1xyUckadrOoed9XTnkg7WY8pO08npGEa_OFOKrcc8hjjRstAZ57DFWCBvr9KE3lP7kCNq6_3iMdKdTc93NNmCYXZhpvkuhmVzt7ZILj_STUTj7JwrN5tFW1Mablb4hLwe0Sd7ut-PyY9PH7_ffKluv33-enN9W2kuZK6Y0UzbFjmMSg7QDjCC4UbZUUjRMazbwagapZGNheKRVlhDY8qr0eCgUByTi1V3G8PPxabcT2W68gmcbVhSL6CrmSh-1QU9_we9D0ucy3S9YLxVincMCvV-pYpzKUU79tvoJoyPPYP-OaW-6fcpFfbdXnEZJmv-kn9iKcCHFUja5d--_EftF4_sng8</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Guo, Han</creator><creator>Wang, Dayin</creator><creator>Feng, Shilun</creator><creator>Zhang, Kaihuan</creator><creator>Luo, Yuan</creator><creator>Zhao, Jianlong</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-0906-5698</orcidid><orcidid>https://orcid.org/0009-0004-7876-3347</orcidid><orcidid>https://orcid.org/0000-0003-3153-7495</orcidid><orcidid>https://orcid.org/0000-0002-7353-4180</orcidid></search><sort><creationdate>202405</creationdate><title>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</title><author>Guo, Han ; Wang, Dayin ; Feng, Shilun ; Zhang, Kaihuan ; Luo, Yuan ; Zhao, Jianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-1dc1ce6a20f98b06b0f0d2d9ef38371a46bd94a8d85e0106c9a405ddc1fdab9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Context</topic><topic>Extracellular vesicles</topic><topic>Fluorescence</topic><topic>Microfluidics</topic><topic>Nanoparticles</topic><topic>Nucleic acids</topic><topic>Qualitative analysis</topic><topic>Recovery</topic><topic>Separation</topic><topic>Vesicles</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Han</creatorcontrib><creatorcontrib>Wang, Dayin</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Zhang, Kaihuan</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Han</au><au>Wang, Dayin</au><au>Feng, Shilun</au><au>Zhang, Kaihuan</au><au>Luo, Yuan</au><au>Zhao, Jianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2024-05</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>034107</spage><pages>034107-</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38947280</pmid><doi>10.1063/5.0208417</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0002-0906-5698</orcidid><orcidid>https://orcid.org/0009-0004-7876-3347</orcidid><orcidid>https://orcid.org/0000-0003-3153-7495</orcidid><orcidid>https://orcid.org/0000-0002-7353-4180</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2024-05, Vol.18 (3), p.034107 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_proquest_journals_3126992710 |
source | AIP Journals Complete |
subjects | Complexity Context Extracellular vesicles Fluorescence Microfluidics Nanoparticles Nucleic acids Qualitative analysis Recovery Separation Vesicles Viscoelasticity Viscosity |
title | A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20viscoelastic%20microfluidic%20platform%20for%20nanoparticle/small%20extracellular%20vesicle%20separation%20through%20viscosity%20gradient-induced%20migration&rft.jtitle=Biomicrofluidics&rft.au=Guo,%20Han&rft.date=2024-05&rft.volume=18&rft.issue=3&rft.spage=034107&rft.pages=034107-&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0208417&rft_dat=%3Cproquest_pubme%3E3126992710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126992710&rft_id=info:pmid/38947280&rfr_iscdi=true |