A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration

Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2024-05, Vol.18 (3), p.034107
Hauptverfasser: Guo, Han, Wang, Dayin, Feng, Shilun, Zhang, Kaihuan, Luo, Yuan, Zhao, Jianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 034107
container_title Biomicrofluidics
container_volume 18
creator Guo, Han
Wang, Dayin
Feng, Shilun
Zhang, Kaihuan
Luo, Yuan
Zhao, Jianlong
description Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.
doi_str_mv 10.1063/5.0208417
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3126992710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126992710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-1dc1ce6a20f98b06b0f0d2d9ef38371a46bd94a8d85e0106c9a405ddc1fdab9a3</originalsourceid><addsrcrecordid>eNp9kU1PHSEUhkljU6268A80JG5sk9EDzAcsjelXYtJNu56cAeaKYYZbYG70V_iXi53bxnTRDXDCw3sO70vIGYNLBq24ai6Bg6xZ94ocMSV4xaCRBy_Oh-RtSvcADes4f0MOhVR1xyUckadrOoed9XTnkg7WY8pO08npGEa_OFOKrcc8hjjRstAZ57DFWCBvr9KE3lP7kCNq6_3iMdKdTc93NNmCYXZhpvkuhmVzt7ZILj_STUTj7JwrN5tFW1Mablb4hLwe0Sd7ut-PyY9PH7_ffKluv33-enN9W2kuZK6Y0UzbFjmMSg7QDjCC4UbZUUjRMazbwagapZGNheKRVlhDY8qr0eCgUByTi1V3G8PPxabcT2W68gmcbVhSL6CrmSh-1QU9_we9D0ucy3S9YLxVincMCvV-pYpzKUU79tvoJoyPPYP-OaW-6fcpFfbdXnEZJmv-kn9iKcCHFUja5d--_EftF4_sng8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126992710</pqid></control><display><type>article</type><title>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</title><source>AIP Journals Complete</source><creator>Guo, Han ; Wang, Dayin ; Feng, Shilun ; Zhang, Kaihuan ; Luo, Yuan ; Zhao, Jianlong</creator><creatorcontrib>Guo, Han ; Wang, Dayin ; Feng, Shilun ; Zhang, Kaihuan ; Luo, Yuan ; Zhao, Jianlong</creatorcontrib><description>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/5.0208417</identifier><identifier>PMID: 38947280</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Complexity ; Context ; Extracellular vesicles ; Fluorescence ; Microfluidics ; Nanoparticles ; Nucleic acids ; Qualitative analysis ; Recovery ; Separation ; Vesicles ; Viscoelasticity ; Viscosity</subject><ispartof>Biomicrofluidics, 2024-05, Vol.18 (3), p.034107</ispartof><rights>Author(s)</rights><rights>2024 Author(s).</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-1dc1ce6a20f98b06b0f0d2d9ef38371a46bd94a8d85e0106c9a405ddc1fdab9a3</cites><orcidid>0009-0002-0906-5698 ; 0009-0004-7876-3347 ; 0000-0003-3153-7495 ; 0000-0002-7353-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/5.0208417$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38947280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Han</creatorcontrib><creatorcontrib>Wang, Dayin</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Zhang, Kaihuan</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><title>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</description><subject>Complexity</subject><subject>Context</subject><subject>Extracellular vesicles</subject><subject>Fluorescence</subject><subject>Microfluidics</subject><subject>Nanoparticles</subject><subject>Nucleic acids</subject><subject>Qualitative analysis</subject><subject>Recovery</subject><subject>Separation</subject><subject>Vesicles</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PHSEUhkljU6268A80JG5sk9EDzAcsjelXYtJNu56cAeaKYYZbYG70V_iXi53bxnTRDXDCw3sO70vIGYNLBq24ai6Bg6xZ94ocMSV4xaCRBy_Oh-RtSvcADes4f0MOhVR1xyUckadrOoed9XTnkg7WY8pO08npGEa_OFOKrcc8hjjRstAZ57DFWCBvr9KE3lP7kCNq6_3iMdKdTc93NNmCYXZhpvkuhmVzt7ZILj_STUTj7JwrN5tFW1Mablb4hLwe0Sd7ut-PyY9PH7_ffKluv33-enN9W2kuZK6Y0UzbFjmMSg7QDjCC4UbZUUjRMazbwagapZGNheKRVlhDY8qr0eCgUByTi1V3G8PPxabcT2W68gmcbVhSL6CrmSh-1QU9_we9D0ucy3S9YLxVincMCvV-pYpzKUU79tvoJoyPPYP-OaW-6fcpFfbdXnEZJmv-kn9iKcCHFUja5d--_EftF4_sng8</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Guo, Han</creator><creator>Wang, Dayin</creator><creator>Feng, Shilun</creator><creator>Zhang, Kaihuan</creator><creator>Luo, Yuan</creator><creator>Zhao, Jianlong</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-0906-5698</orcidid><orcidid>https://orcid.org/0009-0004-7876-3347</orcidid><orcidid>https://orcid.org/0000-0003-3153-7495</orcidid><orcidid>https://orcid.org/0000-0002-7353-4180</orcidid></search><sort><creationdate>202405</creationdate><title>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</title><author>Guo, Han ; Wang, Dayin ; Feng, Shilun ; Zhang, Kaihuan ; Luo, Yuan ; Zhao, Jianlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-1dc1ce6a20f98b06b0f0d2d9ef38371a46bd94a8d85e0106c9a405ddc1fdab9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Context</topic><topic>Extracellular vesicles</topic><topic>Fluorescence</topic><topic>Microfluidics</topic><topic>Nanoparticles</topic><topic>Nucleic acids</topic><topic>Qualitative analysis</topic><topic>Recovery</topic><topic>Separation</topic><topic>Vesicles</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Han</creatorcontrib><creatorcontrib>Wang, Dayin</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Zhang, Kaihuan</creatorcontrib><creatorcontrib>Luo, Yuan</creatorcontrib><creatorcontrib>Zhao, Jianlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Han</au><au>Wang, Dayin</au><au>Feng, Shilun</au><au>Zhang, Kaihuan</au><au>Luo, Yuan</au><au>Zhao, Jianlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2024-05</date><risdate>2024</risdate><volume>18</volume><issue>3</issue><spage>034107</spage><pages>034107-</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Small extracellular vesicles (sEVs) are extracellular vesicles with diameters ranging from 30 to 150 nm, harboring proteins and nucleic acids that reflect their source cells and act as vital mediators of intercellular communication. The comprehensive analysis of sEVs is hindered by the complex composition of biofluids that contain various extracellular vesicles. Conventional separation methods, such as ultracentrifugation and immunoaffinity capture, face routine challenges in operation complexity, cost, and compromised recovery rates. Microfluidic technologies, particularly viscoelastic microfluidics, offer a promising alternative for sEV separation due to its field-free nature, fast and simple operation procedure, and minimal sample consumption. In this context, we here introduce an innovative viscoelastic approach designed to exploit the viscosity gradient-induced force with size-dependent characteristics, thereby enabling the efficient separation of nano-sized particles and sEVs from larger impurities. We first seek to illustrate the underlying mechanism of the viscosity gradient-induced force, followed by experimental validation with fluorescent nanoparticles demonstrating separation results consistent with qualitative analysis. We believe that this work is the first to report such viscosity gradient-induced phenomenon in the microfluidic context. The presented approach achieves ∼80% for both target purity and recovery rate. We further demonstrate effective sEV separation using our device to showcase its efficacy in the real biological context, highlighting its potential as a versatile, label-free platform for sEV analysis in both fundamental biological research and clinical applications.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38947280</pmid><doi>10.1063/5.0208417</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0002-0906-5698</orcidid><orcidid>https://orcid.org/0009-0004-7876-3347</orcidid><orcidid>https://orcid.org/0000-0003-3153-7495</orcidid><orcidid>https://orcid.org/0000-0002-7353-4180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-1058
ispartof Biomicrofluidics, 2024-05, Vol.18 (3), p.034107
issn 1932-1058
1932-1058
language eng
recordid cdi_proquest_journals_3126992710
source AIP Journals Complete
subjects Complexity
Context
Extracellular vesicles
Fluorescence
Microfluidics
Nanoparticles
Nucleic acids
Qualitative analysis
Recovery
Separation
Vesicles
Viscoelasticity
Viscosity
title A novel viscoelastic microfluidic platform for nanoparticle/small extracellular vesicle separation through viscosity gradient-induced migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20viscoelastic%20microfluidic%20platform%20for%20nanoparticle/small%20extracellular%20vesicle%20separation%20through%20viscosity%20gradient-induced%20migration&rft.jtitle=Biomicrofluidics&rft.au=Guo,%20Han&rft.date=2024-05&rft.volume=18&rft.issue=3&rft.spage=034107&rft.pages=034107-&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/5.0208417&rft_dat=%3Cproquest_pubme%3E3126992710%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126992710&rft_id=info:pmid/38947280&rfr_iscdi=true