Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws
High-order bicompact schemes for hyperbolic systems of conservation laws are considered. We aim to significantly speed up these schemes. Implicit-explicit Runge–Kutta methods are proposed for time discretization, instead of the previously used diagonally implicit methods. The global Lax–Friedrichs–R...
Gespeichert in:
Veröffentlicht in: | Mathematical models and computer simulations 2023-02, Vol.15 (1), p.1-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Mathematical models and computer simulations |
container_volume | 15 |
creator | Bragin, M. D. |
description | High-order bicompact schemes for hyperbolic systems of conservation laws are considered. We aim to significantly speed up these schemes. Implicit-explicit Runge–Kutta methods are proposed for time discretization, instead of the previously used diagonally implicit methods. The global Lax–Friedrichs–Rusanov flux splitting is a premise for the implicit-explicit approximation. It is shown that implicit-explicit bicompact schemes are stable for any ratio of steps in time and space. The accuracy of the new implicit-explicit schemes and the substantial speed-up achieved are demonstrated on multidimensional gas dynamics problems. |
doi_str_mv | 10.1134/S2070048223010064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3126933067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126933067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2314-2f61d8c929f69003c7379c29d00614b2e4932955357dd55b25bae683c2a313fb3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVNAP4GaJc8DedR4-QlVopUo9FM6R49iQqomDnQL9e1wFwQGxlx2tZmZHQ8gVZzeco7jdAMsZEwUAMs5YJk7I5HhKmJDs9AcXcE6mIWxZHIS8wGJC1su23zW6GZL55wjofaNd2ys90I1-Na0J1DpPF4fe-MpFCt0cwmDaQJ2lM9cF49_V0LiOrtRHuCRnVu2CmX7vC_L8MH-aLZLV-nE5u1slGpCLBGzG60JLkDaTMY3OMZcaZB3Tc1GBERJBpimmeV2naQVppUxWoAaFHG2FF-R69O29e9ubMJRbt_ddfFkih0wisiyPLD6ytHcheGPL3jet8oeSs_JYXfmnuqiBURMit3sx_tf5f9EXE3Bt7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126933067</pqid></control><display><type>article</type><title>Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bragin, M. D.</creator><creatorcontrib>Bragin, M. D.</creatorcontrib><description>High-order bicompact schemes for hyperbolic systems of conservation laws are considered. We aim to significantly speed up these schemes. Implicit-explicit Runge–Kutta methods are proposed for time discretization, instead of the previously used diagonally implicit methods. The global Lax–Friedrichs–Rusanov flux splitting is a premise for the implicit-explicit approximation. It is shown that implicit-explicit bicompact schemes are stable for any ratio of steps in time and space. The accuracy of the new implicit-explicit schemes and the substantial speed-up achieved are demonstrated on multidimensional gas dynamics problems.</description><identifier>ISSN: 2070-0482</identifier><identifier>EISSN: 2070-0490</identifier><identifier>DOI: 10.1134/S2070048223010064</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Conservation laws ; Gas dynamics ; Hyperbolic systems ; Implicit methods ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Runge-Kutta method ; Simulation and Modeling</subject><ispartof>Mathematical models and computer simulations, 2023-02, Vol.15 (1), p.1-12</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 2070-0482, Mathematical Models and Computer Simulations, 2023, Vol. 15, No. 1, pp. 1–12. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2022, published in Matematicheskoe Modelirovanie, 2022, Vol. 34, No. 6, pp. 3–21.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2314-2f61d8c929f69003c7379c29d00614b2e4932955357dd55b25bae683c2a313fb3</citedby><cites>FETCH-LOGICAL-c2314-2f61d8c929f69003c7379c29d00614b2e4932955357dd55b25bae683c2a313fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S2070048223010064$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S2070048223010064$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bragin, M. D.</creatorcontrib><title>Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws</title><title>Mathematical models and computer simulations</title><addtitle>Math Models Comput Simul</addtitle><description>High-order bicompact schemes for hyperbolic systems of conservation laws are considered. We aim to significantly speed up these schemes. Implicit-explicit Runge–Kutta methods are proposed for time discretization, instead of the previously used diagonally implicit methods. The global Lax–Friedrichs–Rusanov flux splitting is a premise for the implicit-explicit approximation. It is shown that implicit-explicit bicompact schemes are stable for any ratio of steps in time and space. The accuracy of the new implicit-explicit schemes and the substantial speed-up achieved are demonstrated on multidimensional gas dynamics problems.</description><subject>Conservation laws</subject><subject>Gas dynamics</subject><subject>Hyperbolic systems</subject><subject>Implicit methods</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Runge-Kutta method</subject><subject>Simulation and Modeling</subject><issn>2070-0482</issn><issn>2070-0490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVNAP4GaJc8DedR4-QlVopUo9FM6R49iQqomDnQL9e1wFwQGxlx2tZmZHQ8gVZzeco7jdAMsZEwUAMs5YJk7I5HhKmJDs9AcXcE6mIWxZHIS8wGJC1su23zW6GZL55wjofaNd2ys90I1-Na0J1DpPF4fe-MpFCt0cwmDaQJ2lM9cF49_V0LiOrtRHuCRnVu2CmX7vC_L8MH-aLZLV-nE5u1slGpCLBGzG60JLkDaTMY3OMZcaZB3Tc1GBERJBpimmeV2naQVppUxWoAaFHG2FF-R69O29e9ubMJRbt_ddfFkih0wisiyPLD6ytHcheGPL3jet8oeSs_JYXfmnuqiBURMit3sx_tf5f9EXE3Bt7w</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Bragin, M. D.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws</title><author>Bragin, M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2314-2f61d8c929f69003c7379c29d00614b2e4932955357dd55b25bae683c2a313fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Conservation laws</topic><topic>Gas dynamics</topic><topic>Hyperbolic systems</topic><topic>Implicit methods</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Runge-Kutta method</topic><topic>Simulation and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bragin, M. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical models and computer simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bragin, M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws</atitle><jtitle>Mathematical models and computer simulations</jtitle><stitle>Math Models Comput Simul</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2070-0482</issn><eissn>2070-0490</eissn><abstract>High-order bicompact schemes for hyperbolic systems of conservation laws are considered. We aim to significantly speed up these schemes. Implicit-explicit Runge–Kutta methods are proposed for time discretization, instead of the previously used diagonally implicit methods. The global Lax–Friedrichs–Rusanov flux splitting is a premise for the implicit-explicit approximation. It is shown that implicit-explicit bicompact schemes are stable for any ratio of steps in time and space. The accuracy of the new implicit-explicit schemes and the substantial speed-up achieved are demonstrated on multidimensional gas dynamics problems.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S2070048223010064</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2070-0482 |
ispartof | Mathematical models and computer simulations, 2023-02, Vol.15 (1), p.1-12 |
issn | 2070-0482 2070-0490 |
language | eng |
recordid | cdi_proquest_journals_3126933067 |
source | SpringerLink Journals - AutoHoldings |
subjects | Conservation laws Gas dynamics Hyperbolic systems Implicit methods Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Runge-Kutta method Simulation and Modeling |
title | Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implicit-Explicit%20Bicompact%20Schemes%20for%20Hyperbolic%20Systems%20of%20Conservation%20Laws&rft.jtitle=Mathematical%20models%20and%20computer%20simulations&rft.au=Bragin,%20M.%20D.&rft.date=2023-02-01&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2070-0482&rft.eissn=2070-0490&rft_id=info:doi/10.1134/S2070048223010064&rft_dat=%3Cproquest_cross%3E3126933067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126933067&rft_id=info:pmid/&rfr_iscdi=true |