Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model

Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Bac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Li, Hongwei, Ji, Mingxin, Dou, Zhiwu, Zhang, Chunsheng, Li, Xuemin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Li, Hongwei
Ji, Mingxin
Dou, Zhiwu
Zhang, Chunsheng
Li, Xuemin
description Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.
doi_str_mv 10.1109/ACCESS.2023.3241239
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3126924606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032545</ieee_id><doaj_id>oai_doaj_org_article_30e3f500aed24dc69d01846a972a784f</doaj_id><sourcerecordid>3126924606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8abee75ab8cb205fae7dc0b8af1802b78c5f8d3105213be16afea161b5603f363</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjdCuBAJ-ARwi7Tldf8SOcyzdFipRURE4WxN73KYKMWunB_497gatmMvMPM17M6OXZTeUzCgl9e_5YrFsmhkjjM84Kynj9Vl2waisCy64_PGtPs-uYzyQFCpBorrI3p4xIgSzz_2Qb4792BVmDwHMiKGLY2fy5ZDK99Rgvg3eHs2YrxPU990OhzFhnemGXb7Bce9tfgcR7Unrvpn_WRUvT9tm3RR323zjLfZX2U8HfcTrr3yZva6WL4uH4vHpfr2YPxaGi3osFLSIlYBWmZYR4QAra0irwFFFWFspI5yynBLBKG-RSnAIVNJWSMIdl_wyW0-61sNBp-PfIHxoD53-B_iw0xDScz1qTpA7QQigZaU1sraEqlJCXTGoVOmS1q9J6z34v0eMoz74YxjS-ZpTJmtWSnLayKcpE3yMAd3_rZTok016skmfbNJfNiXW7cTqEPEbg3AmSsE_Ae8SjaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126924606</pqid></control><display><type>article</type><title>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Hongwei ; Ji, Mingxin ; Dou, Zhiwu ; Zhang, Chunsheng ; Li, Xuemin</creator><creatorcontrib>Li, Hongwei ; Ji, Mingxin ; Dou, Zhiwu ; Zhang, Chunsheng ; Li, Xuemin</creatorcontrib><description>Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3241239</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Back propagation networks ; Cultural differences ; GSADF-TOPSIS-BP model ; Impact factors ; Intelligent pricing method ; Investment ; Multi-characteristic enterprise product ; Predictive models ; Pricing ; Risk levels ; Support vector machines ; Technological innovation</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8abee75ab8cb205fae7dc0b8af1802b78c5f8d3105213be16afea161b5603f363</cites><orcidid>0000-0002-2020-6570 ; 0000-0002-8542-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Ji, Mingxin</creatorcontrib><creatorcontrib>Dou, Zhiwu</creatorcontrib><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Li, Xuemin</creatorcontrib><title>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Cultural differences</subject><subject>GSADF-TOPSIS-BP model</subject><subject>Impact factors</subject><subject>Intelligent pricing method</subject><subject>Investment</subject><subject>Multi-characteristic enterprise product</subject><subject>Predictive models</subject><subject>Pricing</subject><subject>Risk levels</subject><subject>Support vector machines</subject><subject>Technological innovation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjdCuBAJ-ARwi7Tldf8SOcyzdFipRURE4WxN73KYKMWunB_497gatmMvMPM17M6OXZTeUzCgl9e_5YrFsmhkjjM84Kynj9Vl2waisCy64_PGtPs-uYzyQFCpBorrI3p4xIgSzz_2Qb4792BVmDwHMiKGLY2fy5ZDK99Rgvg3eHs2YrxPU990OhzFhnemGXb7Bce9tfgcR7Unrvpn_WRUvT9tm3RR323zjLfZX2U8HfcTrr3yZva6WL4uH4vHpfr2YPxaGi3osFLSIlYBWmZYR4QAra0irwFFFWFspI5yynBLBKG-RSnAIVNJWSMIdl_wyW0-61sNBp-PfIHxoD53-B_iw0xDScz1qTpA7QQigZaU1sraEqlJCXTGoVOmS1q9J6z34v0eMoz74YxjS-ZpTJmtWSnLayKcpE3yMAd3_rZTok016skmfbNJfNiXW7cTqEPEbg3AmSsE_Ae8SjaA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Hongwei</creator><creator>Ji, Mingxin</creator><creator>Dou, Zhiwu</creator><creator>Zhang, Chunsheng</creator><creator>Li, Xuemin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2020-6570</orcidid><orcidid>https://orcid.org/0000-0002-8542-8676</orcidid></search><sort><creationdate>20230101</creationdate><title>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</title><author>Li, Hongwei ; Ji, Mingxin ; Dou, Zhiwu ; Zhang, Chunsheng ; Li, Xuemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8abee75ab8cb205fae7dc0b8af1802b78c5f8d3105213be16afea161b5603f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Cultural differences</topic><topic>GSADF-TOPSIS-BP model</topic><topic>Impact factors</topic><topic>Intelligent pricing method</topic><topic>Investment</topic><topic>Multi-characteristic enterprise product</topic><topic>Predictive models</topic><topic>Pricing</topic><topic>Risk levels</topic><topic>Support vector machines</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Ji, Mingxin</creatorcontrib><creatorcontrib>Dou, Zhiwu</creatorcontrib><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Li, Xuemin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongwei</au><au>Ji, Mingxin</au><au>Dou, Zhiwu</au><au>Zhang, Chunsheng</au><au>Li, Xuemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3241239</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2020-6570</orcidid><orcidid>https://orcid.org/0000-0002-8542-8676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3126924606
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial intelligence
Artificial neural networks
Back propagation networks
Cultural differences
GSADF-TOPSIS-BP model
Impact factors
Intelligent pricing method
Investment
Multi-characteristic enterprise product
Predictive models
Pricing
Risk levels
Support vector machines
Technological innovation
title Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Multi-characteristic%20Enterprise%20Product%20Intelligent%20Pricing%20Method%20Based%20on%20GSADF-TOPSIS-BP%20Model&rft.jtitle=IEEE%20access&rft.au=Li,%20Hongwei&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3241239&rft_dat=%3Cproquest_ieee_%3E3126924606%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126924606&rft_id=info:pmid/&rft_ieee_id=10032545&rft_doaj_id=oai_doaj_org_article_30e3f500aed24dc69d01846a972a784f&rfr_iscdi=true