Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model
Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Bac...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Li, Hongwei Ji, Mingxin Dou, Zhiwu Zhang, Chunsheng Li, Xuemin |
description | Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing. |
doi_str_mv | 10.1109/ACCESS.2023.3241239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3126924606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10032545</ieee_id><doaj_id>oai_doaj_org_article_30e3f500aed24dc69d01846a972a784f</doaj_id><sourcerecordid>3126924606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8abee75ab8cb205fae7dc0b8af1802b78c5f8d3105213be16afea161b5603f363</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjdCuBAJ-ARwi7Tldf8SOcyzdFipRURE4WxN73KYKMWunB_497gatmMvMPM17M6OXZTeUzCgl9e_5YrFsmhkjjM84Kynj9Vl2waisCy64_PGtPs-uYzyQFCpBorrI3p4xIgSzz_2Qb4792BVmDwHMiKGLY2fy5ZDK99Rgvg3eHs2YrxPU990OhzFhnemGXb7Bce9tfgcR7Unrvpn_WRUvT9tm3RR323zjLfZX2U8HfcTrr3yZva6WL4uH4vHpfr2YPxaGi3osFLSIlYBWmZYR4QAra0irwFFFWFspI5yynBLBKG-RSnAIVNJWSMIdl_wyW0-61sNBp-PfIHxoD53-B_iw0xDScz1qTpA7QQigZaU1sraEqlJCXTGoVOmS1q9J6z34v0eMoz74YxjS-ZpTJmtWSnLayKcpE3yMAd3_rZTok016skmfbNJfNiXW7cTqEPEbg3AmSsE_Ae8SjaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126924606</pqid></control><display><type>article</type><title>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Hongwei ; Ji, Mingxin ; Dou, Zhiwu ; Zhang, Chunsheng ; Li, Xuemin</creator><creatorcontrib>Li, Hongwei ; Ji, Mingxin ; Dou, Zhiwu ; Zhang, Chunsheng ; Li, Xuemin</creatorcontrib><description>Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3241239</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Back propagation networks ; Cultural differences ; GSADF-TOPSIS-BP model ; Impact factors ; Intelligent pricing method ; Investment ; Multi-characteristic enterprise product ; Predictive models ; Pricing ; Risk levels ; Support vector machines ; Technological innovation</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8abee75ab8cb205fae7dc0b8af1802b78c5f8d3105213be16afea161b5603f363</cites><orcidid>0000-0002-2020-6570 ; 0000-0002-8542-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10032545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Ji, Mingxin</creatorcontrib><creatorcontrib>Dou, Zhiwu</creatorcontrib><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Li, Xuemin</creatorcontrib><title>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</title><title>IEEE access</title><addtitle>Access</addtitle><description>Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Cultural differences</subject><subject>GSADF-TOPSIS-BP model</subject><subject>Impact factors</subject><subject>Intelligent pricing method</subject><subject>Investment</subject><subject>Multi-characteristic enterprise product</subject><subject>Predictive models</subject><subject>Pricing</subject><subject>Risk levels</subject><subject>Support vector machines</subject><subject>Technological innovation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjdCuBAJ-ARwi7Tldf8SOcyzdFipRURE4WxN73KYKMWunB_497gatmMvMPM17M6OXZTeUzCgl9e_5YrFsmhkjjM84Kynj9Vl2waisCy64_PGtPs-uYzyQFCpBorrI3p4xIgSzz_2Qb4792BVmDwHMiKGLY2fy5ZDK99Rgvg3eHs2YrxPU990OhzFhnemGXb7Bce9tfgcR7Unrvpn_WRUvT9tm3RR323zjLfZX2U8HfcTrr3yZva6WL4uH4vHpfr2YPxaGi3osFLSIlYBWmZYR4QAra0irwFFFWFspI5yynBLBKG-RSnAIVNJWSMIdl_wyW0-61sNBp-PfIHxoD53-B_iw0xDScz1qTpA7QQigZaU1sraEqlJCXTGoVOmS1q9J6z34v0eMoz74YxjS-ZpTJmtWSnLayKcpE3yMAd3_rZTok016skmfbNJfNiXW7cTqEPEbg3AmSsE_Ae8SjaA</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Hongwei</creator><creator>Ji, Mingxin</creator><creator>Dou, Zhiwu</creator><creator>Zhang, Chunsheng</creator><creator>Li, Xuemin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2020-6570</orcidid><orcidid>https://orcid.org/0000-0002-8542-8676</orcidid></search><sort><creationdate>20230101</creationdate><title>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</title><author>Li, Hongwei ; Ji, Mingxin ; Dou, Zhiwu ; Zhang, Chunsheng ; Li, Xuemin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8abee75ab8cb205fae7dc0b8af1802b78c5f8d3105213be16afea161b5603f363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Cultural differences</topic><topic>GSADF-TOPSIS-BP model</topic><topic>Impact factors</topic><topic>Intelligent pricing method</topic><topic>Investment</topic><topic>Multi-characteristic enterprise product</topic><topic>Predictive models</topic><topic>Pricing</topic><topic>Risk levels</topic><topic>Support vector machines</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongwei</creatorcontrib><creatorcontrib>Ji, Mingxin</creatorcontrib><creatorcontrib>Dou, Zhiwu</creatorcontrib><creatorcontrib>Zhang, Chunsheng</creatorcontrib><creatorcontrib>Li, Xuemin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongwei</au><au>Ji, Mingxin</au><au>Dou, Zhiwu</au><au>Zhang, Chunsheng</au><au>Li, Xuemin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Enterprise product shows many characteristics, thus, pricing is an essential strategy of an enterprise, but the multi-characteristic enterprise product pricing method does not adapt to the dynamic and changeable market demand. As a method of artificial intelligence, the prediction ability of BP (Back ProPagation Network) has been questioned and challenged. Therefore, this article established a multi-characteristic intelligent pricing method research system for an enterprise products, through GSADF (Generalized Sup ADF Statistic) model, measured the price bubble of enterprise products; TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method, established the multi-characteristic enterprise product price impact factor index system and sort the weight, clarify the weight of price impact factor; Further, built GSADF-TOPSIS-BP model as an intelligent pricing method model and make the final pricing based on the price bubble risk level and risk alert, the multi-characteristic enterprise product intelligent pricing method is determined. It reflects the intelligence and superiority compared with the traditional pricing method model, and provides new ideas and methods for multi-characteristic enterprise product pricing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3241239</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2020-6570</orcidid><orcidid>https://orcid.org/0000-0002-8542-8676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3126924606 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial intelligence Artificial neural networks Back propagation networks Cultural differences GSADF-TOPSIS-BP model Impact factors Intelligent pricing method Investment Multi-characteristic enterprise product Predictive models Pricing Risk levels Support vector machines Technological innovation |
title | Research on Multi-characteristic Enterprise Product Intelligent Pricing Method Based on GSADF-TOPSIS-BP Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A27%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Multi-characteristic%20Enterprise%20Product%20Intelligent%20Pricing%20Method%20Based%20on%20GSADF-TOPSIS-BP%20Model&rft.jtitle=IEEE%20access&rft.au=Li,%20Hongwei&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3241239&rft_dat=%3Cproquest_ieee_%3E3126924606%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126924606&rft_id=info:pmid/&rft_ieee_id=10032545&rft_doaj_id=oai_doaj_org_article_30e3f500aed24dc69d01846a972a784f&rfr_iscdi=true |