Reducing carrier recombination loss by suppressing Sn loss and defect formation via Ag doping in Cu2ZnSn(S,Se)4 solar cells

In this study, we analyzed the effect of the position of Ag in the stacked precursor structure of CZTSSe solar cells. Five precursor structures were designed by adding a 5-nm-thick Ag layer to soda-lime glass (SLG)/Mo/Zn/Cu/Sn at various positions, and CZTSSe devices were fabricated through a sulfo-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2024-11, Vol.17 (22), p.8609-8620
Hauptverfasser: Kim, SeongYeon, Lee, Jaebaek, Dae-Ho, Son, Kim, Wook Hyun, Shi-Joon, Sung, Dae-Kue Hwang, Tae Ei Hong, Otgontamir, Namuundari, Enkhjargal Enkhbayar, Lee, Tae-Hee, Min-Yeong, Kim, Ji-Soo, Choi, Sang-Mo Koo, Kim, JunHo, Jin-Kyu, Kang, Dae-Hwan, Kim, Kee-Jeong, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8620
container_issue 22
container_start_page 8609
container_title Energy & environmental science
container_volume 17
creator Kim, SeongYeon
Lee, Jaebaek
Dae-Ho, Son
Kim, Wook Hyun
Shi-Joon, Sung
Dae-Kue Hwang
Tae Ei Hong
Otgontamir, Namuundari
Enkhjargal Enkhbayar
Lee, Tae-Hee
Min-Yeong, Kim
Ji-Soo, Choi
Sang-Mo Koo
Kim, JunHo
Jin-Kyu, Kang
Dae-Hwan, Kim
Kee-Jeong, Yang
description In this study, we analyzed the effect of the position of Ag in the stacked precursor structure of CZTSSe solar cells. Five precursor structures were designed by adding a 5-nm-thick Ag layer to soda-lime glass (SLG)/Mo/Zn/Cu/Sn at various positions, and CZTSSe devices were fabricated through a sulfo-selenization process. The SLG/Mo/Ag/Zn/Cu/Sn precursor structure device (C2) showed the best efficiency. This improvement is attributed to Ag promoting grain growth by forming a Cu–Sn alloy at a low temperature and suppressing the formation of defects and defect clusters. Conversely, the SLG/Mo/Zn/Ag/Cu/Sn precursor structure device (C3) hindered Cu–Zn interdiffusion, degrading the performance. C2 exhibited a small difference between the bandgap energy (Eg) and the photoluminescence, a high activation energy (EA)/Eg, and a long carrier lifetime, indicating reduced defect and carrier recombination loss. This study suggests that the location of Ag plays an important role in optimizing the CZTSSe efficiency. Additionally, a precursor containing Ag has been shown to suppress Sn loss during the sulfo-selenization process and improve device performance through liquid-assisted grain growth. This study shows that the location of Ag plays an important role in suppressing the carrier recombination loss of CZTSSe devices.
doi_str_mv 10.1039/d4ee02485k
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3126898768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126898768</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-28d641730da54ce7eae4520a6d862857bb8845d1eb5ca2c5a9e61d4cdef7de6f3</originalsourceid><addsrcrecordid>eNo1TltLwzAYDaLgnL74CwK-KFhN0tz6OMq8wECw-uLLSJOvo7NLatIK4p93Y_PpHA7nhtAlJXeU5MW94wCEcS0-j9CEKsEzoYg8_ueyYKfoLKU1IZIRVUzQ7yu40bZ-ha2JsYWII9iwqVtvhjZ43IWUcP2D09j3EVLaOauDbLzDDhqwA25C3OwD363BsxV2od9ZW4_LkX34yl9XtxXccJxCZyK20HXpHJ00pktwccApen-Yv5VP2eLl8bmcLbKe0nzImHaSU5UTZwS3oMAAF4wY6bRkWqi61poLR6EW1jArTAGSOm6315QD2eRTdLXv7WP4GiENy3UYo99OLnPKpC60kjr_A8mxYEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126898768</pqid></control><display><type>article</type><title>Reducing carrier recombination loss by suppressing Sn loss and defect formation via Ag doping in Cu2ZnSn(S,Se)4 solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, SeongYeon ; Lee, Jaebaek ; Dae-Ho, Son ; Kim, Wook Hyun ; Shi-Joon, Sung ; Dae-Kue Hwang ; Tae Ei Hong ; Otgontamir, Namuundari ; Enkhjargal Enkhbayar ; Lee, Tae-Hee ; Min-Yeong, Kim ; Ji-Soo, Choi ; Sang-Mo Koo ; Kim, JunHo ; Jin-Kyu, Kang ; Dae-Hwan, Kim ; Kee-Jeong, Yang</creator><creatorcontrib>Kim, SeongYeon ; Lee, Jaebaek ; Dae-Ho, Son ; Kim, Wook Hyun ; Shi-Joon, Sung ; Dae-Kue Hwang ; Tae Ei Hong ; Otgontamir, Namuundari ; Enkhjargal Enkhbayar ; Lee, Tae-Hee ; Min-Yeong, Kim ; Ji-Soo, Choi ; Sang-Mo Koo ; Kim, JunHo ; Jin-Kyu, Kang ; Dae-Hwan, Kim ; Kee-Jeong, Yang</creatorcontrib><description>In this study, we analyzed the effect of the position of Ag in the stacked precursor structure of CZTSSe solar cells. Five precursor structures were designed by adding a 5-nm-thick Ag layer to soda-lime glass (SLG)/Mo/Zn/Cu/Sn at various positions, and CZTSSe devices were fabricated through a sulfo-selenization process. The SLG/Mo/Ag/Zn/Cu/Sn precursor structure device (C2) showed the best efficiency. This improvement is attributed to Ag promoting grain growth by forming a Cu–Sn alloy at a low temperature and suppressing the formation of defects and defect clusters. Conversely, the SLG/Mo/Zn/Ag/Cu/Sn precursor structure device (C3) hindered Cu–Zn interdiffusion, degrading the performance. C2 exhibited a small difference between the bandgap energy (Eg) and the photoluminescence, a high activation energy (EA)/Eg, and a long carrier lifetime, indicating reduced defect and carrier recombination loss. This study suggests that the location of Ag plays an important role in optimizing the CZTSSe efficiency. Additionally, a precursor containing Ag has been shown to suppress Sn loss during the sulfo-selenization process and improve device performance through liquid-assisted grain growth. This study shows that the location of Ag plays an important role in suppressing the carrier recombination loss of CZTSSe devices.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d4ee02485k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier lifetime ; Carrier recombination ; Copper ; Copper base alloys ; Crystal defects ; Grain growth ; Interdiffusion ; Low temperature ; Molybdenum ; Photoluminescence ; Photons ; Photovoltaic cells ; Precursors ; Recombination ; Selenium ; Silver ; Soda-lime glass ; Solar cells ; Tin ; Zinc</subject><ispartof>Energy &amp; environmental science, 2024-11, Vol.17 (22), p.8609-8620</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, SeongYeon</creatorcontrib><creatorcontrib>Lee, Jaebaek</creatorcontrib><creatorcontrib>Dae-Ho, Son</creatorcontrib><creatorcontrib>Kim, Wook Hyun</creatorcontrib><creatorcontrib>Shi-Joon, Sung</creatorcontrib><creatorcontrib>Dae-Kue Hwang</creatorcontrib><creatorcontrib>Tae Ei Hong</creatorcontrib><creatorcontrib>Otgontamir, Namuundari</creatorcontrib><creatorcontrib>Enkhjargal Enkhbayar</creatorcontrib><creatorcontrib>Lee, Tae-Hee</creatorcontrib><creatorcontrib>Min-Yeong, Kim</creatorcontrib><creatorcontrib>Ji-Soo, Choi</creatorcontrib><creatorcontrib>Sang-Mo Koo</creatorcontrib><creatorcontrib>Kim, JunHo</creatorcontrib><creatorcontrib>Jin-Kyu, Kang</creatorcontrib><creatorcontrib>Dae-Hwan, Kim</creatorcontrib><creatorcontrib>Kee-Jeong, Yang</creatorcontrib><title>Reducing carrier recombination loss by suppressing Sn loss and defect formation via Ag doping in Cu2ZnSn(S,Se)4 solar cells</title><title>Energy &amp; environmental science</title><description>In this study, we analyzed the effect of the position of Ag in the stacked precursor structure of CZTSSe solar cells. Five precursor structures were designed by adding a 5-nm-thick Ag layer to soda-lime glass (SLG)/Mo/Zn/Cu/Sn at various positions, and CZTSSe devices were fabricated through a sulfo-selenization process. The SLG/Mo/Ag/Zn/Cu/Sn precursor structure device (C2) showed the best efficiency. This improvement is attributed to Ag promoting grain growth by forming a Cu–Sn alloy at a low temperature and suppressing the formation of defects and defect clusters. Conversely, the SLG/Mo/Zn/Ag/Cu/Sn precursor structure device (C3) hindered Cu–Zn interdiffusion, degrading the performance. C2 exhibited a small difference between the bandgap energy (Eg) and the photoluminescence, a high activation energy (EA)/Eg, and a long carrier lifetime, indicating reduced defect and carrier recombination loss. This study suggests that the location of Ag plays an important role in optimizing the CZTSSe efficiency. Additionally, a precursor containing Ag has been shown to suppress Sn loss during the sulfo-selenization process and improve device performance through liquid-assisted grain growth. This study shows that the location of Ag plays an important role in suppressing the carrier recombination loss of CZTSSe devices.</description><subject>Carrier lifetime</subject><subject>Carrier recombination</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Crystal defects</subject><subject>Grain growth</subject><subject>Interdiffusion</subject><subject>Low temperature</subject><subject>Molybdenum</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Precursors</subject><subject>Recombination</subject><subject>Selenium</subject><subject>Silver</subject><subject>Soda-lime glass</subject><subject>Solar cells</subject><subject>Tin</subject><subject>Zinc</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1TltLwzAYDaLgnL74CwK-KFhN0tz6OMq8wECw-uLLSJOvo7NLatIK4p93Y_PpHA7nhtAlJXeU5MW94wCEcS0-j9CEKsEzoYg8_ueyYKfoLKU1IZIRVUzQ7yu40bZ-ha2JsYWII9iwqVtvhjZ43IWUcP2D09j3EVLaOauDbLzDDhqwA25C3OwD363BsxV2od9ZW4_LkX34yl9XtxXccJxCZyK20HXpHJ00pktwccApen-Yv5VP2eLl8bmcLbKe0nzImHaSU5UTZwS3oMAAF4wY6bRkWqi61poLR6EW1jArTAGSOm6315QD2eRTdLXv7WP4GiENy3UYo99OLnPKpC60kjr_A8mxYEs</recordid><startdate>20241112</startdate><enddate>20241112</enddate><creator>Kim, SeongYeon</creator><creator>Lee, Jaebaek</creator><creator>Dae-Ho, Son</creator><creator>Kim, Wook Hyun</creator><creator>Shi-Joon, Sung</creator><creator>Dae-Kue Hwang</creator><creator>Tae Ei Hong</creator><creator>Otgontamir, Namuundari</creator><creator>Enkhjargal Enkhbayar</creator><creator>Lee, Tae-Hee</creator><creator>Min-Yeong, Kim</creator><creator>Ji-Soo, Choi</creator><creator>Sang-Mo Koo</creator><creator>Kim, JunHo</creator><creator>Jin-Kyu, Kang</creator><creator>Dae-Hwan, Kim</creator><creator>Kee-Jeong, Yang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20241112</creationdate><title>Reducing carrier recombination loss by suppressing Sn loss and defect formation via Ag doping in Cu2ZnSn(S,Se)4 solar cells</title><author>Kim, SeongYeon ; Lee, Jaebaek ; Dae-Ho, Son ; Kim, Wook Hyun ; Shi-Joon, Sung ; Dae-Kue Hwang ; Tae Ei Hong ; Otgontamir, Namuundari ; Enkhjargal Enkhbayar ; Lee, Tae-Hee ; Min-Yeong, Kim ; Ji-Soo, Choi ; Sang-Mo Koo ; Kim, JunHo ; Jin-Kyu, Kang ; Dae-Hwan, Kim ; Kee-Jeong, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-28d641730da54ce7eae4520a6d862857bb8845d1eb5ca2c5a9e61d4cdef7de6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier lifetime</topic><topic>Carrier recombination</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Crystal defects</topic><topic>Grain growth</topic><topic>Interdiffusion</topic><topic>Low temperature</topic><topic>Molybdenum</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Precursors</topic><topic>Recombination</topic><topic>Selenium</topic><topic>Silver</topic><topic>Soda-lime glass</topic><topic>Solar cells</topic><topic>Tin</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, SeongYeon</creatorcontrib><creatorcontrib>Lee, Jaebaek</creatorcontrib><creatorcontrib>Dae-Ho, Son</creatorcontrib><creatorcontrib>Kim, Wook Hyun</creatorcontrib><creatorcontrib>Shi-Joon, Sung</creatorcontrib><creatorcontrib>Dae-Kue Hwang</creatorcontrib><creatorcontrib>Tae Ei Hong</creatorcontrib><creatorcontrib>Otgontamir, Namuundari</creatorcontrib><creatorcontrib>Enkhjargal Enkhbayar</creatorcontrib><creatorcontrib>Lee, Tae-Hee</creatorcontrib><creatorcontrib>Min-Yeong, Kim</creatorcontrib><creatorcontrib>Ji-Soo, Choi</creatorcontrib><creatorcontrib>Sang-Mo Koo</creatorcontrib><creatorcontrib>Kim, JunHo</creatorcontrib><creatorcontrib>Jin-Kyu, Kang</creatorcontrib><creatorcontrib>Dae-Hwan, Kim</creatorcontrib><creatorcontrib>Kee-Jeong, Yang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, SeongYeon</au><au>Lee, Jaebaek</au><au>Dae-Ho, Son</au><au>Kim, Wook Hyun</au><au>Shi-Joon, Sung</au><au>Dae-Kue Hwang</au><au>Tae Ei Hong</au><au>Otgontamir, Namuundari</au><au>Enkhjargal Enkhbayar</au><au>Lee, Tae-Hee</au><au>Min-Yeong, Kim</au><au>Ji-Soo, Choi</au><au>Sang-Mo Koo</au><au>Kim, JunHo</au><au>Jin-Kyu, Kang</au><au>Dae-Hwan, Kim</au><au>Kee-Jeong, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing carrier recombination loss by suppressing Sn loss and defect formation via Ag doping in Cu2ZnSn(S,Se)4 solar cells</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2024-11-12</date><risdate>2024</risdate><volume>17</volume><issue>22</issue><spage>8609</spage><epage>8620</epage><pages>8609-8620</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>In this study, we analyzed the effect of the position of Ag in the stacked precursor structure of CZTSSe solar cells. Five precursor structures were designed by adding a 5-nm-thick Ag layer to soda-lime glass (SLG)/Mo/Zn/Cu/Sn at various positions, and CZTSSe devices were fabricated through a sulfo-selenization process. The SLG/Mo/Ag/Zn/Cu/Sn precursor structure device (C2) showed the best efficiency. This improvement is attributed to Ag promoting grain growth by forming a Cu–Sn alloy at a low temperature and suppressing the formation of defects and defect clusters. Conversely, the SLG/Mo/Zn/Ag/Cu/Sn precursor structure device (C3) hindered Cu–Zn interdiffusion, degrading the performance. C2 exhibited a small difference between the bandgap energy (Eg) and the photoluminescence, a high activation energy (EA)/Eg, and a long carrier lifetime, indicating reduced defect and carrier recombination loss. This study suggests that the location of Ag plays an important role in optimizing the CZTSSe efficiency. Additionally, a precursor containing Ag has been shown to suppress Sn loss during the sulfo-selenization process and improve device performance through liquid-assisted grain growth. This study shows that the location of Ag plays an important role in suppressing the carrier recombination loss of CZTSSe devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ee02485k</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2024-11, Vol.17 (22), p.8609-8620
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_3126898768
source Royal Society Of Chemistry Journals 2008-
subjects Carrier lifetime
Carrier recombination
Copper
Copper base alloys
Crystal defects
Grain growth
Interdiffusion
Low temperature
Molybdenum
Photoluminescence
Photons
Photovoltaic cells
Precursors
Recombination
Selenium
Silver
Soda-lime glass
Solar cells
Tin
Zinc
title Reducing carrier recombination loss by suppressing Sn loss and defect formation via Ag doping in Cu2ZnSn(S,Se)4 solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A36%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20carrier%20recombination%20loss%20by%20suppressing%20Sn%20loss%20and%20defect%20formation%20via%20Ag%20doping%20in%20Cu2ZnSn(S,Se)4%20solar%20cells&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Kim,%20SeongYeon&rft.date=2024-11-12&rft.volume=17&rft.issue=22&rft.spage=8609&rft.epage=8620&rft.pages=8609-8620&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d4ee02485k&rft_dat=%3Cproquest%3E3126898768%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126898768&rft_id=info:pmid/&rfr_iscdi=true